
i

Entity Resolution
in the Web of Data

ii

Vassilis Christophides
University of Crete, Greece & INRIA, France

christop@csd.uoc.gr

Vasilis Efthymiou
University of Crete & ICS-FORTH, Greece

vefthym@ics.forth.gr

Kostas Stefanidis
ICS-FORTH, Greece

kstef@ics.forth.gr

iii

Contents

List of Figures . v

List of Tables . vii

1 Web of Data: Describing and Linking Entities . 3

2 Matching and Resolving Entities . 19

2.1 The Problem of Entity Resolution . 19

2.2 Similarity functions . 24

2.2.1 Content-based similarity functions . 27

2.2.2 Relational similarity functions . 31

2.2.3 Approximations of similarity functions . 36

2.3 Discussion . 40

3 Blocking . 42

3.1 The Problem of Entity Blocking . 42

3.2 Blocking in Traditional Data Warehouses . 43

3.3 Blocking in the Web of Data . 45

3.4 Block Post-processing Methods . 53

3.5 Discussion . 56

4 Iterative Entity Resolution . 59

4.1 The problem of iterative entity resolution . 59

4.2 Merging-based iterative entity resolution . 61

4.3 Relationship-based iterative entity resolution . 64

4.4 Iterative Blocking . 71

4.5 Discussion . 73

5 Experimental Evaluation of Blocking Algorithms . 75

5.1 Datasets . 75

5.2 Measures . 80

5.3 Quality Results . 80

iv

5.3.1 Identified Matches (TPs) . 81

5.3.2 Missed Matches (FNs) . 83

5.3.3 Non-matches (FPs and TNs) . 86

5.4 Performance Results . 86

5.5 Different Types of Links . 87

5.6 Lessons Learned . 88

6 Conclusions . 90

Authors’ Biographies . 108

v

List of Figures

1.1 A part of the Web of data, extracted from three knowledge bases. 4

1.2 The Linked Open Data cloud of Web KBs. 11

1.3 In- (top) and out-degree (bottom) distributions of different categories

of datasets. 12

1.4 Searching and recommending entities related to “Stanley Kubrick”. 18

2.1 Multiple entity descriptions. 20

2.2 Entity resolution process. 23

2.3 Ideal and realistic similarity functions in entity resolution. 25

2.4 An example of a relational star schema. 31

2.5 An example RDF graph, used to evaluate LINDAsim. 34

2.6 An example RDF graph, used to evaluate simov. 35

2.7 An example characteristic matrix (a), three random permutations

h1, h2, h3 of the rows of this matrix (b) and the resulting minhash

signature matrix (c). 37

2.8 The S-curve. 39

3.1 A set of entity descriptions. 46

3.2 Token blocking example. 46

3.3 Attribute clustering blocking example: (a) most similar attribute-pairs,

(b) attribute clusters, (c) generated blocks. 48

3.4 Prefix-infix(-suffix) blocking example: (a) the input entity collection,

(b) URI identifiers of the descriptions, (c) generated blocks. 50

3.5 The blocks generated by a set-similarity join method for the

descriptions of Figure 3.1. 51

3.6 The blocks of Figure 3.2 in ascending order of size (top) and the

corresponding entity index (bottom). 54

3.7 Meta-blocking example: (a) depicts a blocking graph, which is pruned

(b), to discard unnecessary comparisons. 56

vi

4.1 A merging-based iterative ER example (a) and a relationship-based

iterative ER example (b). 60

4.2 The execution of R-Swoosh for Example 4.3. 63

4.3 Two different descriptions of the movie A Clockwork Orange and its

cast in XML. 66

4.4 An entity graph used by collective entity resolution. 66

4.5 An execution example of LINDA. (a) PQ initialization, (b) PQ update,

(c) new matches are found, (d) distributed version. 69

4.6 An example showing the process of iterative blocking. 72

4.7 The general structure of HARRA. 72

4.8 A progressive ER algorithm A, compared to a typical ER algorithm B. . . 74

5.1 Common tokens (top) and common tokens in common clusters

(bottom) per entity description distributions for D1-D6. 85

vii

List of Tables

1.1 The RDF triples of the entities appearing on Figure 1.1. 5

1.2 Comparison of knowledge bases. 7

1.3 Top-3 properties used by RDF links within each topical domain in the

2014 LOD cloud. 13

1.4 Top 10 KBs based on their number of incoming owl:sameAs links. 13

3.1 Criteria for placing descriptions in the same block. 57

3.2 Blocking approaches with respect to the redundancy attitude and

algorithmic attitude. 57

5.1 Datasets characteristics. 77

5.2 Characteristics of datasets with different types of links to

BTC12DBpedia. 77

5.3 Entity collections characteristics. 78

5.4 Definitions for pairs of descriptions, based on whether they appear in a

common block, or not. 79

5.5 Quality measures (the ideal value of each measure is in boldface). 81

5.6 Statistics and evaluation of blocking methods. 84

5.7 Characteristics of the missed matches (false negatives) of token blocking. 86

5.8 Recall of token blocking for the collections composed of datasets of

Table 5.2 and BTC12DBpedia. 88

1

PREFACE

Over the past decade, numerous knowledge bases (KBs) have been built to power a new

generation of Web applications that provide entity-centric search and recommendation ser-

vices. These KBs offer comprehensive, machine-readable descriptions of a large variety of

real-world entities (e.g., persons, places, products, events) published on the Web as Linked

Data (LD). Even when derived from the same data source (e.g., a Wikipedia entry), KBs

such as DBpedia, YAGO2, or Freebase may provide multiple, non-identical descriptions

for the same real-world entities. This is due to the different information extraction tools

and curation policies employed by KBs, resulting to complementary and sometimes con-

flicting entity descriptions. Entity resolution (ER) aims to identify different descriptions

that refer to the same real-world entity, and emerges as a central data-processing task for

an entity-centric organization of Web data. ER is needed to enrich interlinking of data

elements describing entities, even by third-parties, so that the Web of data can be accessed

by machines as a global data space using standard languages, such as SPARQL. ER can

also facilitate an automated KB construction by integrating entity descriptions from legacy

KBs with Web content published as HTML documents.

ER has attracted significant attention from many researchers in information systems,

database and machine-learning communities. The objective of this lecture is to present

the new ER challenges stemming from the Web openness in describing, by an unbounded

number of KBs, a multitude of entity types across domains, as well as the high hetero-

geneity (semantic and structural) of descriptions, even for the same types of entities. The

scale, diversity and graph structuring of entity descriptions published according to the LD

paradigm challenge the core ER tasks, namely, (i) how descriptions can be effectively com-

pared for similarity and (ii) how resolution algorithms can efficiently filter the candidate

pairs of descriptions that need to be compared.

In a multi-type and large-scale entity resolution, we need to examine whether two

entity descriptions are somehow (or near) similar without resorting to domain-specific

similarity functions and/or mapping rules. Furthermore, the resolution of some entity de-

scriptions might influence the resolution of other neighbourhood descriptions. This setting

clearly goes beyond deduplication (or record linkage) of collections of descriptions usually

referring to a single entity type that slightly differ only in their attribute values. It es-

sentially requires leveraging similarity of descriptions both on their content and structure.

It also forces us to revisit traditional ER workflows consisting of separate indexing (for

pruning the number of candidate pairs) and matching (for resolving entity descriptions)

phases.

This synthesis lecture is intended to provide a starting point for researchers, students

and developers who are interested in a global view of the ER problem in the Web of data.

Throughout the lecture, we present the basic concepts and resolution workflows, as well

as state-of-art indexing and matching techniques. We additionally survey new ER execu-

2

tion strategies (such as parallel/distributed and progressive strategies) to resolve, under

specific efficiency or effectiveness constraints, very large collections of entity descriptions,

eventually arriving in streams. We made an effort to define in a self-contained way the

similarity measures and data structures involved in various algorithms along with repre-

sentative examples. We finally provide an experimental evaluation of a large part of the

presented techniques and explain the involved tradeoffs for real KBs in the Web of data.

Much of the material presented in this lecture has been used in graduate courses taught at

the University of Crete, as well as in two recent tutorials at CIKM13 and WWW14.

Since ER is a specialized problem of Data Integration, our synthesis lecture provides

complementary material with other books in this research area. [Doan et al., 2012]

focuses on models, languages and architectures for Data Integration systems, as well as

on techniques for rewriting and processing queries on top. It also covers machine learning

techniques for inferring mappings/matchings between heterogeneous relational and Web

data. [Dong and Srivastava, 2015] stresses the Data Integration challenges in the Big Data

era. In particular, it details how well-known ER algorithms can benefit from parallel and

distributed implementations, aiming to reduce the overall execution time of the entire ER

process. The book also considers schema alignment, as well as techniques for linking text

snippets with embedded attributes, to structured records. Record Linkage techniques and

Deduplication techniques for traditional Data Warehouse settings have been the subject

of numerous surveys and books, as [Naumann and Herschel, 2010] and [Christen, 2012].

Finally readers are referred to [Abiteboul et al., 2011] for a comprehensive overview of

languages and technologies involved in Web Data Management.

Vassilis Christophides, Vasilis Efthymiou and Kostas Stefanidis

June 2015

3

C H A P T E R 1

Web of Data: Describing and
Linking Entities

The Web bears the potential of being a universal source of knowledge used to answer

questions, retrieve facts, solve problems or create new knowledge. Many major scientific

discoveries have been made possible by recognizing the connections across domains or by

integrating insights from several sources [Gruber, 2008]. This process requires to access deep

insights involving the actual subject matter of scientific domains that clearly goes beyond

simple associations of words supported by the existing Web infrastructure. The emerging

Web of data aims to support a global data infrastructure, in which things of the real world

(i.e., entities) are described on the Web by data rather than documents. This generation of

the Web infrastructure is expected to transform the way structured information is exploited

across domains at a large scale, and thus plays the role of a key-enabling technology for

the forthcoming data-driven economy1. The Web of data has been proposed as a striped-

down version of the W3C specifications for the Semantic Web [Heath and Bizer, 2011]

and has been boosted by the proliferation of scientific datasets made available worldwide

according to the fourth paradigm of science [Hey et al., 2009], as well as of high-quality

open encyclopaedias, like Wikipedia2.

An increasing number of government organizations, local bodies, private companies,

scientific or citizen communities are currently describing a great variety of real-world entities

(e.g., persons, places, products, events) as Linked Data (LD). LD refers to the recent W3C

efforts3 for a unifying, machine-readable data representation infrastructure, enabling to

semantically access and interlink heterogeneous sources at the data level, no matter what

the structure and the semantics of the data is, who created it, or where it comes from. The

core idea is to use HTTP URIs to identify arbitrary real-world entities. Whenever a Web

client resolves one of these URIs, the corresponding Web server provides the description of

the identified entity under the form of a collection of RDF triples4, i.e., subject-predicate-

object facts. These datasets may contain links to entities described in other Web servers.

Links are also expressed in the RDF syntax, in which the subject of the triple is a URI

in the namespace of one server, and the object of the triple is a URI in the namespace

1http://ec.europa.eu/digital-agenda/en/towards-thriving-data-driven-economy
2https://www.wikipedia.org
3http://www.w3.org/DesignIssues/LinkedData.html
4http://www.w3.org/RDF

4 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

dbpedia:
A_Clockwork_Orange_(film)

dbpedia:Stanley_Kubrick dbpedia:Manhattan dbpedia:
Statue_of_Liberty

fbase:m.0p1l2

dbonto:director dbonto:birthPlace dbonto:location

fbase:aviation.
airport.serves

DBpedia

Freebase

fbase: m.0cc56 fbase:m. 06mn7

fbase:people.person.
place_of_birth

owl:sameAs owl:sameAs

Airports

airports:KJFK

umbel:isLike

vocab.org/fly/
schema/runway

airports:KJFK/runways/13R-31L

Figure 1.1: A part of the Web of data, extracted from three knowledge bases.

of the other. The predicate URI of the triple determines the type of the link. Whenever

an application resolves the URI of a predicate, the corresponding server responds with the

definition of the link type in an RDF Schema (RDFS5) or Web Ontology Language (OWL6)

syntax. Such schema descriptions can, in turn, contain links to semantic constructs (e.g.,

properties, classes) defined in other vocabularies [Cheng and Qu, 2013]. Exhibiting a higher

degree of interoperability than documents and ease of reuse both by humans and machines,

LD emerges as a prominent paradigm for publishing structured information worldwide.

Example 1.1 Consider, for example, the entities of Figure 1.1, whose descriptions are

published by three knowledge bases DBpedia7, Freebase8 and Airports9. In this example,

DBpedia describes four entities, namely the movie A Clockwork Orange, its director, Stan-

ley Kubrick along with his birth place Manhattan, and the Statue of Liberty, which is

nearby located. Freebase provides an alternative description for Stanley Kubrick and Man-

hattan, while it additionally describes the John F Kennedy (JFK) International Airport

5http://www.w3.org/TR/rdf-schema
6http://www.w3.org/TR/owl2-overview
7http://dbpedia.org
8https://www.freebase.com
9The “airports” dataset on https://archive.org/details/kasabi

5

serving NY city. Another description of JFK is published by the Airports base along with

one of JFK runways. The facts employed to describe these entities in the three knowl-

edge bases are given as collections of RDF triples in Table 1.1: each block of triples with

a common subject describes an entity. You can easily observe the graph-based structure

of entity descriptions expressed in RDF. Nodes of this graph represent the URLs of en-

tities (e.g., dbpedia:A Clockwork Orange (film)), while edges represent the different types

of relationships (i.e., links) that stand among the described entities. For instance, proper-

ties like dbonto:director, dbonto:birthPlace or dbonto:location (having as subject and object

URLs from the same namespace) relate the descriptions of different types of entities within

DBpedia, while owl:sameAs (having as subject and object URLs from different names-

paces) indicate somehow similar descriptions of the same real-world entity across different

knowledge bases.

Web Knowledge Bases

Comprehensive, machine-readable descriptions of real-world entities are hosted in knowl-

edge bases (KB). Entities in a KB are described as instances using concepts and relation-

ships among them. These semantic modelling constructs are flexibly represented nowa-

days in the RDF syntax (see Table 1.1) overcoming the schema rigidity of traditional

databases [Christophides, 2009].

Over the past decade, numerous KBs have been built to power a new generation of

Web applications, such as entity-centric search [Balog et al., 2010a,b, Blanco et al., 2011,

Haas et al., 2011, Kitsos et al., 2014, Lin et al., 2012] and recommendations [Blanco et al.,

2013, Miliaraki et al., 2015, Yu et al., 2014]. Such KBs can be domain-specific, describing

specific types of entities from a well-defined domain of interest, as for example, movie and

music production, scientific publications, social and economic statistics and life sciences, or

be cross-domain, containing encyclopaedic knowledge for a variety of entity types, as for

Table 1.1: The RDF triples of the entities appearing on Figure 1.1.

KB subject predicate object

D
B
p
e
d
ia

dbpedia:A Clockwork Orange (film) dbonto:director dbpedia:Stanley Kubrick
dbpedia:A Clockwork Orange (film) dbonto:Work/runtime “136”
dbpedia:A Clockwork Orange (film) rdfs:label “A Clockwork Orange (film)”
dbpedia:A Clockwork Orange (film) foaf:name “A Clockwork Orange”

dbpedia:Stanley Kubrick dbonto:birthPlace dbpedia:Manhattan
dbpedia:Stanley Kubrick owl:sameAs fbase:m.06mn7
dbpedia:Stanley Kubrick rdf:type foaf:Person
dbpedia:Stanley Kubrick rdf:type yago:AmericanFilmDirectors
dbpedia:Stanley Kubrick rdf:type yago:AmateurChessPlayers

dbpedia:Manhattan owl:sameAs fbase:m.0cc56
dbpedia:Manhattan rdf:type yago:IslandsOfTheHudsonRiver

dbpedia:Statue of Liberty dbonto:location dbpedia:Manhattan

F
r
e
e
b
a
s
e fbase:m.06mn7 fbase:type.object.name “Stanley Kubrick”

fbase:m.06mn7 fbase:people.person.place of birth fbase:m.0cc56
fbase:m.06mn7 fbase:people.person.parents fbase:m.02g68r
fbase:m.06mn7 fbase:people.person.parents fbase:m.02g656g
fbase:m.0p1l2 fbase:aviation.airport.serves fbase:m.0cc56

A
ir
p
o
r
t
s airports:KFJK foaf:name “John F Kennedy International Airport”

airports:KFJK foaf:homepage http://www.panynj.gov/airports/jfk.html
airports:KFJK umbel:isLike fbase:m.0p1l2
airports:KFJK http://vocab.org/fly/schema/runway airports:KJFK/runways/13R-31L

6 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

instance, DBpedia [Auer et al., 2007], YAGO2 [Hoffart et al., 2013] and Freebase [Bollacker

et al., 2008]. Traditionally, KBs are manually crafted by a dedicated team of knowledge

engineers, such as the pioneering projects Wordnet10 and Cyc11. With the explosion of the

Web, more and more KBs are built from existing Web content using information extraction

tools [Doan et al., 2009]. Such an automated approach offers an unprecedented opportunity

to scale-up KBs construction and leverage existing knowledge published in HTML docu-

ments [Hovy et al., 2013]. More precisely, we can further distinguish between [Dong et al.,

2014a]:

• KBs derived from well-structured textual entries of high-quality sources, like

Wikipedia infoboxes12: YAGO2, DBpedia and Freebase,

• KBs derived from schemaless information extraction techniques applied over the entire

Web: Reverb [Fader et al., 2011], OLLIE [Mausam et al., 2012], Microsoft Satori,

Google Knowledge Graph13 and Knowledge Vault [Dong et al., 2014a],

• KBs derived from domain-specific Web pages using a specific ontology: NELL [Carlson

et al., 2010], PROSPERA [Nakashole et al., 2011], DeepDive [Niu et al., 2012] and

Facebook Entity Graph14.

Several questions naturally arise regarding the characteristics of the entity descrip-

tions published by a KB on the Web. For example,

• how many entities are described and by how many facts (aka triples)?

• what entity types (aka classes) are covered, and what property vocabularies are em-

ployed to describe them?

• which semantic relationships (e.g., equivalence, relatedness) stand between the entities

described within or across KBs?

These questions are essential in order to assess various aspects of KB data quality [Za-

veri et al., 2014] and be able to choose the most suitable KBs for the needs of a specific

application. In particular, they allow us to understand extrinsic characteristics of entity de-

scriptions, such as coverage, completeness and relevance, but also intrinsic, such as accuracy,

consistency and conciseness [Kontokostas et al., 2014]. Compared to data warehouses, the

new data quality challenges stem from the Web openness in describing by an unbounded

number of KBs a multitude of entity types across domains, as well as the high heterogeneity

10http://wordnet.princeton.edu
11http://www.cyc.com
12http://en.wikipedia.org/wiki/Template:Infobox
13http://www.google.com/insidesearch/features/search/knowledge.html
14https://www.facebook.com/notes/facebook-engineering/under-the-hood-the-entities-

graph/10151490531588920

7

Table 1.2: Comparison of knowledge bases.

Knowledge base # Entities # Classes # RDF triples # Properties

YAGO2 10M 350K 120M 100

DBpedia (en) 4.58M 685 583M 2,795

Freebase 46.3M 1.5K 2.67B 4K

Knowledge Graph [Dong et al., 2014a] 600M 15K 20B 35K

Knowledge Vault [Dong et al., 2014a] 45M 1.1K 1.6B 4.5K

(semantic and structural) of descriptions even for the same types of entities. As a matter

of fact, the autonomy of KBs in terms of adopted processes for creating and curating entity

descriptions [Deshpande et al., 2013] results to complementary (and sometimes conflicting)

descriptions even for the same real-world entities (when they evolve). The ability to recon-

cile multiple descriptions, within or across KBs, which refer to the same real-world entity

is crucial in order to foster an entity-centric organization of Web data [Bouquet et al.,

2007, Dalvi et al., 2009, 2012, Miklós et al., 2010]. In particular, it will enable interlink-

ing of entity descriptions even by third-parties15. This clearly requires an understanding

of the relationships among entity descriptions that goes beyond high similarity studied in

traditional deduplication and cleaning problems [Christen, 2012, Naumann and Herschel,

2010]. We essentially need to explore entity descriptions that are somehow (or near) similar

[Broder, 2000, He, 2014, Papadias, 2009] without always being able to merge related entity

descriptions in a KB and thus improve its quality16.

In the sequel, we will take a closer look at KBs that are derived from Wikipedia,

using information extraction tools and occasionally involving human volunteers. Table 1.2

summarizes their main characteristics. Only the English version of DBpedia17, in 2014,

describes 4.58M entities using 583M triples, including 1,445,000 persons, 735,000 places,

411,000 creative works, 241,000 organizations, 251,000 species and 6,000 diseases. All ver-

sions together (125 languages) describe 38.3M entities, out of which 23.8M are localized

descriptions of entities that also exist in the English version. The full version consists of 3B

triples out of which 583M were extracted from the English edition of Wikipedia and 2.46B

were extracted from other language editions. It features 25.2M links to images and 29.8M

links to external Web pages. Moreover, it is connected to other KBs by around 50M links.

Apart from its own 685 classes that DBpedia defines to assign semantic types to its entities

(e.g., Person, Place), it also contains 80.9M links to Wikipedia categories and 41.2M links to

more fine-grained YAGO classes (e.g., AmateurChessPlayers, IslandsOfTheHudsonRiver).

15For instance, the sameas.org service provides co-references of the same entities between different KBs that have
been manually collected.

16Entity interlinking shares similar motivations with the approach of consistent query answering over inconsistent
databases [Bertossi, 2011].

17http://wiki.dbpedia.org/Datasets

8 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

Besides Wikipedia, YAGO2 also exploits knowledge from WordNet18 and GeoNames19. It

currently describes20 more than 10M entities using 120M RDF triples employing 100 prop-

erties from 100 languages. It combines the clean taxonomy of WordNet with the richness of

the Wikipedia category system, assigning the entities to more than 350K classes. Moreover,

it is anchored in time and space, since many of its entities and triples are associated with

a temporal and spatial dimension. The accuracy of YAGO2 has been manually assessed to

reach 95%. To enhance data completeness, Freebase allows structured descriptions of enti-

ties to be contributed by volunteers (after approval) in the spirit of the original Wikipedia.

It currently describes21 46.3M entities in 1,500 classes, and contains 2.67B triples for 4K

properties, where only 637M triples are non-redundant. Still, 75% of people descriptions in

Freebase have no known nationality, 91% have no known education, 68% have no known

profession and 71% have no known place of birth [Bordes and Gabrilovich, 2014]. A recent

Google endeavour, the Knowledge Graph KB fuses entity descriptions from several KBs, in-

cluding Freebase and the CIA World Factbook22. It currently contains about 600M entities

in 15K classes and more than 20B triples for 35K properties.

Finally, Google’s Knowledge Vault pushes forward the automated KB construction

process, by combining descriptions of entities published in existing KBs, like Freebase, with

facts extracted from free text, DOM trees, Web tables23 or human annotations of Web pages.

To enhance trustworthiness, each triple is associated with a confidence score, representing

the probability that the Knowledge Vault “believes” the triple is correct. Currently, it

contains 1.6B triples, out of which 324M have a confidence of 0.7 or higher, and 271M have

a confidence of 0.9 or higher. Moreover, it describes 45M entities in 1,100 classes.

Semantic Annotations of Web pages

Besides KBs, machine-readable descriptions of real-world entities are also published in the

Web of data as semantic annotations of HTML pages under a variety of markup formats

(Microdata24, RDFa25, Microformats26). The embedded semi-structured data is crawled

together with the unstructured HTML pages by search engines (e.g., Google27, Yahoo!28,

Yandex29, and Bing30) in order to support entity-centric Web applications involving search

(e.g., e-shopping, news stories) or not (e.g., Google Now, Pinterest) [Balog et al., 2010a,b,

18http://wordnet.princeton.edu
19http://www.geonames.org
20http://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
21https://developers.google.com/freebase/data
22https://www.cia.gov/library/publications/the-world-factbook
23More on exploiting valuable information from Web tables can be found in [Bizer, 2014, Cafarella et al., 2008].
24http://www.w3.org/TR/microdata
25http://www.w3.org/standards/techs/rdfa
26http://microformats.org
27https://developers.google.com/structured-data
28https://developer.yahoo.com/searchmonkey/siteowner.html
29https://webmaster.yandex.com/microtest.xml
30http://www.bing.com/webmaster/help/marking-up-your-site-with-structured-data-3a93e731

9

Blanco et al., 2011, Haas et al., 2011, Lin et al., 2012]. An entity describes a “thing” (i.e.,

a building, person or event) that is recognizable as such and will be described using certain

properties.

Until recently, only the big search engine companies had access to large quantities

of such entity descriptions as they were the only ones possessing large Web crawls. With

the advent of the Common Crawl31 non-profit foundation for Web crawling, a subset of

the pages from each website, along with a subset of their Microdata, RDFa, Microformats

annotations, are regularly made publically available. Moreover, the Web Data Commons32

project regularly extracts from the Common Crawl structured data (from semantic an-

notations, as well as Web Tables33), and publish them for research purposes. According

to the latest extraction campaign34, semi-structured data were found within 620 million

HTML pages out of the 2.01 billion pages contained in the crawl (30%). Altogether, the

extracted datasets consist of 20.48 billion RDF quads (the forth element represents the

provenance of each triple). For example, over 90,000 e-commerce websites annotate prod-

uct data, while 60,000 websites provide data about local businesses. These websites include

the major players in many domains so that it can be assumed that nearly all real-world

entities that exist (such as products or hotels) are covered by the extracted semi-structured

data [Meusel et al., 2014]. Besides Web-scale sources of entity descriptions extracted by

semantic annotations and Web tables, a number of commercial sites dispose descriptions

of specialized entities, such as products (e.g., UPC35, GTIN13.com36, Smoopa37), points of

interest (e.g., restaurants38, hotels39) or even people (e.g., yasni40). These sites essentially

harvest descriptions of unique Web entities, but do not make them available for public use.

It is worth mentioning that to avoid semantic discrepancies of semi-structured data

embedded in Web pages, the above search engine companies have agreed on a common

vocabulary41 for describing entities across their applications [Guha, 2013]. For instance,

thanks to Schema.org integrations, Google can instantly understand whether the content of

a website concerns a movie, a person, a TV series, etc. Clearly, there is a continuous increase

in the number of pay-level domains (PLD) adopting the Schema.org classes. Currently, 2.72

31http://commoncrawl.org
32http://www.webdatacommons.org
33HTML tables on the Web are used not only for layout purposes, but also contain high-quality entity de-

scriptions whose types and properties are understood by analyzing tables’ content and surrounding textual
information [Balakrishnan et al., 2015]. Readers are refereed to [Dalvi et al., 2012, Doan et al., 2009, Grishman,
2012] for recent surveys on the information extraction techniques used in this context.

34http://webdatacommons.org/structureddata/2014-12/stats/stats.html
35(http://www.upcdatabase.com
36http://gtin13.com
37http://www.smoopa.com
38http://yelp.com and http://urbanspoon.com
39http://www.booking.com and http://www.tripadvisor.com
40http://www.yasni.com
41http://schema.org

10 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

million PLDs out of the 15.68 million PLDs covered by the WebDataCommons crawl42

provide such annotations (17%), while the adoption rates on websites that are in the Alexa

top lists for e-commerce, tourism and job websites are above 60% in all three domains43.

Given that the issue of “entities” (rather than “keywords”) appeared on the radar of the

search engine industry only recently, we expect an increase in this ratio in the coming years.

The quality of entity descriptions published in this fragment of the Web of data varies

a lot [Meusel and Paulheim, 2015]. Most entities are only marked up with a relatively small

number of general-purpose properties (e.g., name or description), leading to rather flat and

abstract descriptions. As the Web is an open and unrestricted information environment,

entity descriptions might be outdated or simply wrong [Meusel et al., 2014] due to mistakes

in the underlying database or to noise in the extraction process. In order to improve various

aspects of data quality [Kontokostas et al., 2014, Zaveri et al., 2014], descriptions from

several sources need to be resolved in order to identify and fuse those that refer to the same

real-world entities [Dong and Naumann, 2009, Dong et al., 2014b]. We believe that entity

resolution in this context can benefit a lot from deduplication techniques proposed in a data

warehouse setting. On the contrary, discovering and selecting the most appropriate number

of Web sources to support a given coverage threshold is a challenging task. As reported in

the literature, even for domains with strong head aggregators, we need to go to the long

tail of Web sources to build a complete database of entities [Dalvi et al., 2012].

Entity Interlinking

Following the Linked Open Data (LOD) guidelines, data publishers are encouraged to de-

scribe and interlink real-world entities using the RDF data model. Entities are named

using HTTP URIs, so that people can access their descriptions on the Web, while more

entities can be discovered by following different types of semantic relationships, encoded

as links between entities. Interlinking is conducted by a variety of participants including

KB providers, KB consumers and third parties, and enables to move through a potentially

endless Web of related entity descriptions. The so-constructed Web of data is usually rep-

resented by the LOD cloud44, in which nodes are KBs (aka RDF datasets) and edges are

links crossing KBs45. The 2014 version of the LOD cloud, shown in Figure 1.2, consists of

1014 KBs from eight broad domains (e.g., cross-domain, media, geographic, publication,

social networking, life sciences) with more than 60B triples, whose predicates are defined

in 649 distinct vocabularies46.

In general, although very large KBs are being added to the LOD cloud on a regular

basis (e.g., Linked TCGA [Saleem et al., 2013]), they are only sparsely interlinked. Recent

studies show that 44% of the LOD KBs are not at all linked [Schmachtenberg et al., 2014].

42http://www.webdatacommons.org/structureddata/2014-12/stats/stats.html
43http://www.slideshare.net/bizer/bizer-bis2015web-asglobaldataspace (Slide 24 ff)
44http://lod-cloud.net
45Actually, edges indicate the existence of at least 50 links between two KBs.
46http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state

11

Li
nk

ed
 D

at
as

et
s

as
 o

f A
ug

us
t 2

01
4

U
ni

pr
ot

Al
ex

an
dr

ia
D

ig
ita

l L
ib

ra
ry

G
az

et
te

er

lo
bi

d
O

rg
an

iz
at

io
ns

ch
em

2
bi

o2
rd

f

M
ul

tim
ed

ia
La

b
U

ni
ve

rs
ity

G
he

nt

O
pe

n
D

at
a

Ec
ua

do
r

G
eo

Ec
ua

do
r

Se
re

nd
ip

ity

U
TP

L
LO

D

G
ov

Ag
riB

us
D

en
m

ar
k

D
Bp

ed
ia

liv
e

U
R

I
Bu

rn
er

Li
ng

ui
st

ic
s

So
ci

al
 N

et
w

or
ki

ng

Li
fe

 S
ci

en
ce

s

C
ro

ss
-D

om
ai

n

G
ov

er
nm

en
t

U
se

r-G
en

er
at

ed
 C

on
te

nt

Pu
bl

ic
at

io
ns

G
eo

gr
ap

hi
c

M
ed

ia

Id
en

tif
ie

rs

Ei
on

et
R

D
F

lo
bi

d
R

es
ou

rc
es

W
ik

tio
na

ry
D

Bp
ed

ia

Vi
af

U
m

th
es

R
KB

Ex
pl

or
er

C
ou

rs
ew

ar
e

O
pe

nc
yc

O
lia

G
em

.
Th

es
au

ru
s

Au
di

ov
is

ue
le

Ar
ch

ie
ve

n

D
is

ea
so

m
e

FU
-B

er
lin

Eu
ro

vo
c

in
SK

O
S

D
N

B
G

N
D

C
or

ne
tto

Bi
o2

R
D

F
Pu

bm
ed

Bi
o2

R
D

F
N

D
C

Bi
o2

R
D

F
M

es
h

ID
S

O
nt

os
N

ew
s

Po
rta

l

AE
M

ET

in
ev

er
yc

re
a

Li
nk

ed
U

se
r

Fe
ed

ba
ck

M
us

eo
s

Es
pa

ni
a

G
N

O
SS

Eu
ro

pe
an

a

N
om

en
cl

at
or

As
tu

ria
s

R
ed

 U
no

In
te

rn
ac

io
na

l
G

N
O

SS

G
eo

W
or

dn
et

Bi
o2

R
D

F
H

G
N

C

C
tic

Pu
bl

ic
D

at
as

et

Bi
o2

R
D

F
H

om
ol

og
en

e

Bi
o2

R
D

F
Af

fy
m

et
rix

M
un

in
n

W
or

ld
 W

ar
 I

C
KA

N

G
ov

er
nm

en
t

W
eb

 In
te

gr
at

io
n

fo
r

Li
nk

ed
D

at
a

U
ni

ve
rs

id
ad

de
 C

ue
nc

a
Li

nk
ed

da
ta

Fr
ee

ba
se

Li
nk

lio
n

Ar
ia

dn
e

O
rg

an
ic

Ed
un

et

G
en

e
Ex

pr
es

si
on

At
la

s
R

D
F

C
he

m
bl

R
D

F

Bi
os

am
pl

es
R

D
F

Id
en

tif
ie

rs
O

rg

Bi
om

od
el

s
R

D
F

R
ea

ct
om

e
R

D
F

D
is

ge
ne

t

Se
m

an
tic

Q
ur

an

IA
TI

 a
s

Li
nk

ed
 D

at
a

D
ut

ch
Sh

ip
s

an
d

Sa
ilo

rs

Ve
rri

jk
tk

on
in

kr
ijk

IS
er

ve

Ar
ag

o-
db

pe
di

a

Li
nk

ed
TC

G
A

AB
S

27
0a

.in
fo

R
D

F
Li

ce
ns

e

En
vi

ro
nm

en
ta

l
Ap

pl
ic

at
io

ns
R

ef
er

en
ce

Th
es

au
ru

s

Th
is

t

Ju
da

ic
aL

in
k

BP
R

O
C

D

Sh
oa

h
Vi

ct
im

s
N

am
es

R
el

oa
d

D
at

a
fo

r
To

ur
is

ts
 in

C
as

til
la

 y
 L

eo
n

20
01

Sp
an

is
h

C
en

su
s

to
 R

D
F

R
KB

Ex
pl

or
er

W
eb

sc
ie

nc
e

R
KB

Ex
pl

or
er

Ep
rin

ts
H

ar
ve

st

N
VS

EU
 A

ge
nc

ie
s

Bo
di

es

EP
O

Li
nk

ed
N

U
TS

R
KB

Ex
pl

or
er

Ep
sr

c

O
pe

n
M

ob
ile

N
et

w
or

k

R
KB

Ex
pl

or
er

Li
sb

on

R
KB

Ex
pl

or
er

Ita
ly

C
E4

R

En
vi

ro
nm

en
t

Ag
en

cy
Ba

th
in

g
W

at
er

Q
ua

lit
y

R
KB

Ex
pl

or
er

Ka
un

as

O
pe

n
D

at
a

Th
es

au
ru

s

R
KB

Ex
pl

or
er

W
or

dn
et

R
KB

Ex
pl

or
er

EC
S

Au
st

ria
n

Sk
i

R
ac

er
s

So
ci

al
-

se
m

w
eb

Th
es

au
ru

s

D
at

a
O

pe
n

Ac
 U

k

R
KB

Ex
pl

or
er

IE
EE

R
KB

Ex
pl

or
er

LA
AS

R
KB

Ex
pl

or
er

W
ik

i

R
KB

Ex
pl

or
er

JI
SC

R
KB

Ex
pl

or
er

Ep
rin

ts

R
KB

Ex
pl

or
er

Pi
sa

R
KB

Ex
pl

or
er

D
ar

m
st

ad
t

R
KB

Ex
pl

or
er

un
lo

co
de

R
KB

Ex
pl

or
er

N
ew

ca
st

le

R
KB

Ex
pl

or
er

O
S

R
KB

Ex
pl

or
er

C
ur

ric
ul

um

R
KB

Ex
pl

or
er

R
es

ex

R
KB

Ex
pl

or
er

R
om

a

R
KB

Ex
pl

or
er

Eu
re

co
m

R
KB

Ex
pl

or
er

IB
M

R
KB

Ex
pl

or
er

N
SF

R
KB

Ex
pl

or
er

ki
st

i

R
KB

Ex
pl

or
er

D
BL

P

R
KB

Ex
pl

or
er

AC
M

R
KB

Ex
pl

or
er

C
ite

se
er

R
KB

Ex
pl

or
er

So
ut

ha
m

pt
on

R
KB

Ex
pl

or
er

D
ee

pb
lu

e

R
KB

Ex
pl

or
er

D
ep

lo
y

R
KB

Ex
pl

or
er

R
is

ks

R
KB

Ex
pl

or
er

ER
A

R
KB

Ex
pl

or
er

O
AI

R
KB

Ex
pl

or
er

FT

R
KB

Ex
pl

or
er

U
lm

R
KB

Ex
pl

or
er

Iri
t

R
KB

Ex
pl

or
er

R
AE

20
01

R
KB

Ex
pl

or
er

D
ot

ac

R
KB

Ex
pl

or
er

Bu
da

pe
st

Sw
ed

is
h

O
pe

n
C

ul
tu

ra
l

H
er

ita
ge

R
ad

at
an

a

C
ou

rts
Th

es
au

ru
s

G
er

m
an

La
bo

r L
aw

Th
es

au
ru

s

G
ov

U
K

Tr
an

sp
or

t
D

at
a G

ov
U

K
Ed

uc
at

io
n

D
at

a

En
ak

tin
g

M
or

ta
lit

y

En
ak

tin
g

En
er

gy

En
ak

tin
g

C
rim

e

En
ak

tin
g

Po
pu

la
tio

n

En
ak

tin
g

C
O

2E
m

is
si

onEn
ak

tin
g

N
H

S

R
KB

Ex
pl

or
er

C
rim

e

R
KB

Ex
pl

or
er

co
rd

is

G
ov

tra
ck

G
eo

lo
gi

ca
l

Su
rv

ey
 o

f
Au

st
ria

Th
es

au
ru

s

G
eo

Li
nk

ed
D

at
a

G
es

is
Th

es
oz

Bi
o2

R
D

F
Ph

ar
m

gk
b

Bi
o2

R
D

F
Sa

bi
or

k
Bi

o2
R

D
F

N
cb

ig
en

e

Bi
o2

R
D

F
Ire

fin
de

x Bi
o2

R
D

F
Ip

ro
cl

as
s

Bi
o2

R
D

F
G

O
A

Bi
o2

R
D

F
D

ru
gb

an
k

Bi
o2

R
D

F
C

TD

Bi
o2

R
D

F
Bi

om
od

el
s

Bi
o2

R
D

F
D

BS
N

P

Bi
o2

R
D

F
C

lin
ic

al
tri

al
s

Bi
o2

R
D

F
LS

R

Bi
o2

R
D

F
O

rp
ha

ne
t

Bi
o2

R
D

F
W

or
m

ba
se

BI
S

27
0a

.in
fo

D
M

2E

D
Bp

ed
ia

PT

D
Bp

ed
ia

ES

D
Bp

ed
ia

C
S

D
Bn

ar
y

Al
pi

no
R

D
F

YA
G

O

Pd
ev

Le
m

on

Le
m

on
ub

yIs
oc

at

Ie
tfl

an
g

C
or

e

KU
PK

B

G
et

ty
AA

T

Se
m

an
tic

W
eb

Jo
ur

na
l

O
pe

nl
in

kS
W

D
at

as
pa

ce
s

M
yO

pe
nl

in
k

D
at

as
pa

ce
s

Ju
ge

m

Ty
pe

pa
d

As
pi

re
H

ar
pe

r
Ad

am
s

N
BN

R
es

ol
vi

ng

W
or

ld
ca

t Bi
o2

R
D

F

Bi
o2

R
D

F
EC

O

Ta
xo

n-
co

nc
ep

t
As

se
ts

In
dy

m
ed

ia

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
im

d
Em

pl
oy

m
en

t
R

an
k

La
 2

01
0

G
N

U
Li

ce
ns

es

G
re

ek
W

or
dn

et

D
Bp

ed
ia

C
IP

FA

Ys
o.

fi
Al

la
rs

G
lo

tto
lo

g

St
at

us
N

et
Bo

ni
fa

z

St
at

us
N

et
sh

no
ul

le

R
ev

yu

St
at

us
N

et
Ka

th
ry

l

C
ha

rg
in

g
St

at
io

ns

As
pi

re
U

C
L

Te
ko

rd

D
id

ac
ta

lia

Ar
te

nu
e

Vo
sm

ed
io

s
G

N
O

SS

Li
nk

ed
C

ru
nc

hb
as

e

ES
D

St
an

da
rd

s

VI
VO

U
ni

ve
rs

ity
of

 F
lo

rid
a

Bi
o2

R
D

F
SG

D
R

es
ou

rc
es

Pr
od

uc
t

O
nt

ol
og

y

D
at

os
Bn

e.
es

St
at

us
N

et
M

rb
lo

g

Bi
o2

R
D

F
D

at
as

et

EU
N

IS

G
ov

U
K

H
ou

si
ng

M
ar

ke
t

LC
SH

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
 in

d.
H

ou
se

ho
ld

s
In

 te
m

p.
Ac

co
m

.

U
ni

pr
ot

KB

St
at

us
N

et
Ti

m
ttm

y

Se
m

an
tic

W
eb

G
ru

nd
la

ge
n

G
ov

U
K

In
pu

t i
nd

.
Lo

ca
l A

ut
ho

rit
y

Fu
nd

in
g

Fr
om

G
ov

er
nm

en
t

G
ra

nt

St
at

us
N

et
Fc

es
tra

da

JI
TA

St
at

us
N

et
So

m
sa

nt
s

St
at

us
N

et
Ili

ke
fre

ed
om

D
ru

gb
an

k
FU

-B
er

lin

Se
m

an
lin

k

St
at

us
N

et
D

td
ns

St
at

us
N

et
St

at
us

.n
et

D
C

S
Sh

ef
fie

ld

At
he

lia
R

FI
D

St
at

us
N

et
Te

kk

Li
st

a
En

ca
be

za
M

ie
nt

os
M

at
er

ia

St
at

us
N

et
Fr

ag
de

v

M
or

el
ab

D
BT

un
e

Jo
hn

 P
ee

l
Se

ss
io

ns

R
D

Fi
ze

la
st

.fm

O
pe

n
D

at
a

Eu
sk

ad
i

G
ov

U
K

Tr
an

sp
ar

en
cy

In
pu

t i
nd

.
Lo

ca
l a

ut
h.

Fu
nd

in
g

f.
G

vm
nt

. G
ra

nt

M
SC

Le
xi

nf
o

St
at

us
N

et
Eq

ue
st

ria
rp

As
n.

us

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
H

ea
lth

 R
an

k
la

20
10

St
at

us
N

et
M

ac
no

O
ce

an
dr

illi
ng

Bo
re

ho
le

As
pi

re
Q

m
ul

G
ov

U
K

Im
pa

ct
In

di
ca

to
rs

Pl
an

ni
ng

Ap
pl

ic
at

io
ns

G
ra

nt
ed

Lo
iu

s

D
at

ah
ub

.io

St
at

us
N

et
M

ay
m

ay

Pr
os

pe
ct

s
an

d
Tr

en
ds

G
N

O
SS

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
 In

di
ca

to
rs

En
er

gy
 E

ffi
ci

en
cy

ne
w

 B
ui

ld
s

D
Bp

ed
ia

EU

Bi
o2

R
D

F
Ta

xo
n

St
at

us
N

et
Ts

ch
lo

tfe
ld

t

Ja
m

en
do

D
BT

un
e

As
pi

re
N

TU

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
H

ea
lth

 S
co

re
20

10

Lo
tic

o
G

N
O

SS

U
ni

pr
ot

M
et

ad
at

a

Li
nk

ed
Eu

ro
st

at

As
pi

re
Su

ss
ex

Le
xv

o

Li
nk

ed
G

eo
D

at
a

St
at

us
N

et
Sp

ip

SO
R

S

G
ov

U
K

H
om

el
es

s-
ne

ss
Ac

ce
pt

. p
er

10
00

TW
C

IE
EE

vi
s

As
pi

re
Br

un
el

Pl
an

et
D

at
a

Pr
oj

ec
t

W
ik

i

St
at

us
N

et
Fr

ee
lis

h

St
at

is
tic

s
da

ta
.g

ov
.u

k

St
at

us
N

et
M

ul
es

ta
bl

e

En
ip

ed
ia

U
K

Le
gi

sl
at

io
n

AP
I

Li
nk

ed
M

D
B

St
at

us
N

et
Q

th

Si
de

r
FU

-B
er

lin

D
Bp

ed
ia

D
E

G
ov

U
K

H
ou

se
ho

ld
s

So
ci

al
 le

tti
ng

s
G

en
er

al
 N

ee
ds

Le
tti

ng
s

Pr
p

N
um

be
r

Be
dr

oo
m

s

Ag
ro

vo
c

Sk
os

M
y

Ex
pe

rim
en

t

Pr
oy

ec
to

Ap
ad

rin
a

G
ov

U
K

Im
d

C
rim

e
R

an
k

20
10

SI
SV

U

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
H

ou
si

ng
 R

an
k

la
20

10

St
at

us
N

et
U

ni
Si

eg
en

O
pe

nd
at

a
Sc

ot
la

nd
 S

im
d

Ed
uc

at
io

n
R

an
k

St
at

us
N

et
Ka

im
i

G
ov

U
K

H
ou

se
ho

ld
s

Ac
co

m
m

od
at

ed
pe

r 1
00

0

St
at

us
N

et
Pl

an
et

lib
re

D
Bp

ed
ia

EL

Sz
ta

ki
LO

D

D
Bp

ed
ia

Li
te

D
ru

g
In

te
ra

ct
io

n
Kn

ow
le

dg
e

Ba
se

St
at

us
N

et
Q

dn
x

Am
st

er
da

m
M

us
eu

m
AS

 E
D

N
 L

O
D

R
D

F
O

hl
oh

D
BT

un
e

ar
tis

ts
la

st
.fm

As
pi

re
U

cl
an

H
el

le
ni

c
Fi

re
 B

rig
ad

e

Bi
bs

on
om

y

N
ot

tin
gh

am
Tr

en
t

R
es

ou
rc

e
Li

st
s

O
pe

nd
at

a
Sc

ot
la

nd
 S

im
d

In
co

m
e

R
an

k

R
an

do
m

ne
ss

G
ui

de
Lo

nd
on

O
pe

nd
at

a
Sc

ot
la

nd
Si

m
d

H
ea

lth
R

an
k

So
ut

ha
m

pt
on

EC
S

Ep
rin

ts

FR
B

27
0a

.in
fo

St
at

us
N

et
Se

bs
eb

01

St
at

us
N

et
Bk

a

ES
D

To
ol

ki
t

H
el

le
ni

c
Po

lic
e

St
at

us
N

et
C

ed
11

7

O
pe

n
En

er
gy

In
fo

 W
ik

i

St
at

us
N

et
Ly

di
as

te
nc

h

O
pe

n
D

at
a

R
IS

P

Ta
xo

n-
co

nc
ep

t
O

cc
ur

en
ce

s

Bi
o2

R
D

F
SG

D

U
IS

27
0a

.in
fo

N
YT

im
es

Li
nk

ed
 O

pe
n

D
at

a

As
pi

re
Ke

el
e

G
ov

U
K

H
ou

se
ho

ld
s

Pr
oj

ec
tio

ns
Po

pu
la

tio
n

W
3C

O
pe

nd
at

a
Sc

ot
la

nd
Si

m
d

H
ou

si
ng

R
an

k

ZD
B

St
at

us
N

et
1w

6

St
at

us
N

et
Al

ex
an

dr
e

Fr
an

ke

D
ew

ey
D

ec
im

al
C

la
ss

ifi
ca

tio
n

St
at

us
N

et
St

at
us

St
at

us
N

et
do

om
ic

ile

C
ur

re
nc

y
D

es
ig

na
to

rs

St
at

us
N

et
H

iic
o

Li
nk

ed
Ed

ga
r

G
ov

U
K

H
ou

se
ho

ld
s

20
08

D
O

I

St
at

us
N

et
Pa

nd
ai

d

Br
az

ilia
n

Po
lit

ic
ia

ns

N
H

S
Ja

rg
on

Th
es

es
.fr

Li
nk

ed
Li

fe
D

at
a

Se
m

an
tic

 W
eb

D
og

Fo
od

U
M

BE
L

O
pe

nl
y

Lo
ca

l

St
at

us
N

et
Ss

w
ee

ny

Li
nk

ed
Fo

od

In
te

ra
ct

iv
e

M
ap

s
G

N
O

SS

O
EC

D
27

0a
.in

fo

Su
do

c.
fr

G
re

en
C

om
pe

tit
iv

e-
ne

ss
G

N
O

SS

St
at

us
N

et
In

te
gr

al
bl

ue

W
O

LD

Li
nk

ed
St

oc
k

In
de

x

Ap
ac

he

KD
AT

A

Li
nk

ed
O

pe
n

Pi
ra

cy

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
rv

. I
m

d
Em

pl
. R

an
k

La
 2

01
0

BB
C

M
us

ic

St
at

us
N

et
Q

ui
tte

r

St
at

us
N

et
Sc

of
fo

ni

O
pe

n
El

ec
tio

n
D

at
a

Pr
oj

ec
t

R
ef

er
en

ce
da

ta
.g

ov
.u

k

St
at

us
N

et
Jo

nk
m

an

Pr
oj

ec
t

G
ut

en
be

rg
FU

-B
er

lin
D

BT
ro

pe
s

St
at

us
N

et
Sp

ra
ci

Li
br

is

EC
B

27
0a

.in
fo

St
at

us
N

et
Th

el
ov

eb
ug

Ic
an

e

G
re

ek
Ad

m
in

is
tra

tiv
e

G
eo

gr
ap

hy

Bi
o2

R
D

F
O

M
IM

St
at

us
N

et
O

ra
ng

es
ee

ds

N
at

io
na

l
D

ie
t L

ib
ra

ry
W

EB
 N

D
L

Au
th

or
iti

es

U
ni

pr
ot

Ta
xo

no
m

y

D
Bp

ed
ia

N
L

L3
S

D
BL

P

FA
O

G
eo

po
lit

ic
al

O
nt

ol
og

y

G
ov

U
K

Im
pa

ct
In

di
ca

to
rs

H
ou

si
ng

 S
ta

rts

D
eu

ts
ch

e
Bi

og
ra

ph
ie

St
at

us
N

et
ld

nf
ai

St
at

us
N

et
Ke

us
er

St
at

us
N

et
R

us
sw

ur
m

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
C

rim
e

R
an

k
20

10

G
ov

U
K

Im
d

In
co

m
e

R
an

k
La

20
10

St
at

us
N

et
D

at
en

fa
hr

t

St
at

us
N

et
Im

irh
il

So
ut

ha
m

pt
on

ac
.u

k

LO
D

2
Pr

oj
ec

t
W

ik
i

D
Bp

ed
ia

KO

D
ai

ly
m

ed
FU

-B
er

lin

W
AL

S

D
Bp

ed
ia

IT

St
at

us
N

et
R

ec
it

Li
ve

jo
ur

na
l

St
at

us
N

et
Ex

dc

El
vi

aj
er

o

Av
es

3D

O
pe

n
C

al
ai

s

Za
ra

go
za

Tu
rru

ta

As
pi

re
M

an
ch

es
te

r

W
or

dn
et

(V
U

)

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
 In

di
ca

to
rs

N
ei

gh
bo

ur
ho

od
Pl

an
s

St
at

us
N

et
D

av
id

H
ab

er
th

ue
r

B3
Ka

t

Pu
b

Bi
el

ef
el

d

Pr
ef

ix
.c

c

N
AL

T

Vu
ln

er
a-

pe
di

a

G
ov

U
K

Im
pa

ct
In

di
ca

to
rs

Af
fo

rd
ab

le
H

ou
si

ng
 S

ta
rts

G
ov

U
K

W
el

lb
ei

ng
 ls

oa
H

ap
py

Ye
st

er
da

y
M

ea
n

Fl
ic

kr
W

ra
pp

r
Ys

o.
fi

YS
A

O
pe

n
Li

br
ar

y

As
pi

re
Pl

ym
ou

th

St
at

us
N

et
Jo

hn
dr

in
k

W
at

er

St
at

us
N

et
G

om
er

tro
ni

c

Ta
gs

2c
on

D
el

ic
io

us

St
at

us
N

et
tl1

n

St
at

us
N

et
Pr

og
va

l

Te
st

ee

W
or

ld
Fa

ct
bo

ok
FU

-B
er

lin

D
Bp

ed
ia

JA

St
at

us
N

et
C

oo
le

ys
ek

ul
a

Pr
od

uc
t

D
B

IM
F

27
0a

.in
fo

St
at

us
N

et
Po

st
bl

ue

St
at

us
N

et
Sk

ille
dt

es
ts

N
ex

tw
eb

G
N

O
SS

Eu
ro

st
at

FU
-B

er
lin

G
ov

U
K

H
ou

se
ho

ld
s

So
ci

al
 L

et
tin

gs
G

en
er

al
 N

ee
ds

Le
tti

ng
s

Pr
p

H
ou

se
ho

ld
C

om
po

si
tio

n

St
at

us
N

et
Fc

ac

D
W

S
G

ro
up

O
pe

nd
at

a
Sc

ot
la

nd
G

ra
ph

Si
m

d
R

an
k

D
N

B

C
le

an
En

er
gy

D
at

a
R

ee
gl

e

O
pe

nd
at

a
Sc

ot
la

nd
 S

im
d

Em
pl

oy
m

en
t

R
an

k

C
hr

on
ic

lin
g

Am
er

ic
a

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
R

an
k

20
10

St
at

us
N

et
Be

lfa
la

s

As
pi

re
M

M
U

St
at

us
N

et
Le

ga
do

lib
re

Bl
uk

BN
B

St
at

us
N

et
Le

bs
an

ft

G
AD

M
G

eo
vo

ca
b

G
ov

U
K

Im
d

Sc
or

e
20

10

Se
m

an
tic

XB
R

L

U
K

Po
st

co
de

s

G
eo

N
am

es

EE
AR

od
As

pi
re

R
oe

ha
m

pt
on

BF
S

27
0a

.in
fo

C
am

er
a

D
ep

ut
at

i
Li

nk
ed

D
at

a

Bi
o2

R
D

F
G

en
eI

D

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
 In

di
ca

to
rs

Pl
an

ni
ng

Ap
pl

ic
at

io
ns

G
ra

nt
ed

St
at

us
N

et
Sw

ee
tie

Be
lle

O
'R

ei
lly

G
N

I

C
ity

Li
ch

fie
ld

G
ov

U
K

Im
d

R
an

k
20

10

Bi
bl

e
O

nt
ol

og
y

Id
re

f.f
r

St
at

us
N

et
At

ar
i

Fr
os

ch

D
ev

8d

N
ob

el
Pr

iz
es

St
at

us
N

et
So

uc
y

Ar
ch

iv
es

hu
b

Li
nk

ed
D

at
a

Li
nk

ed
R

ai
lw

ay
D

at
a

Pr
oj

ec
t

FA
O

27
0a

.in
fo

G
ov

U
K

W
el

lb
ei

ng
W

or
th

w
hi

le
M

ea
n

Bi
bb

as
e

Se
m

an
tic

-
w

eb
.o

rg

Br
iti

sh
M

us
eu

m
C

ol
le

ct
io

n

G
ov

U
K

D
ev

 L
oc

al
Au

th
or

ity
Se

rv
ic

es

C
od

e
H

au
s

Li
ng

vo
j

O
rd

na
nc

e
Su

rv
ey

Li
nk

ed
D

at
a

W
or

dp
re

ss

Eu
ro

st
at

R
D

F

St
at

us
N

et
Ke

nz
oi

d

G
EM

ET

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
rv

. i
m

d
Sc

or
e

'1
0

M
is

M
us

eo
s

G
N

O
SS

G
ov

U
K

H
ou

se
ho

ld
s

Pr
oj

ec
tio

ns
to

ta
l

H
ou

se
ol

ds

St
at

us
N

et
20

10
0

EE
A

C
ia

rd
R

in
g

O
pe

nd
at

a
Sc

ot
la

nd
 G

ra
ph

Ed
uc

at
io

n
Pu

pi
ls

 b
y

Sc
ho

ol
 a

nd
D

at
az

on
e

VI
VO

In
di

an
a

U
ni

ve
rs

ity

Po
ke

pe
di

a

Tr
an

sp
ar

en
cy

27
0a

.in
fo

St
at

us
N

et
G

lo
u

G
ov

U
K

H
om

el
es

sn
es

s
H

ou
se

ho
ld

s
Ac

co
m

m
od

at
ed

Te
m

po
ra

ry
H

ou
si

ng
 T

yp
es

ST
W

Th
es

au
ru

s
fo

r
Ec

on
om

ic
s

D
eb

ia
n

Pa
ck

ag
e

Tr
ac

ki
ng

Sy
st

em

D
BT

un
e

M
ag

na
tu

ne

N
U

TS
G

eo
-

vo
ca

b
G

ov
U

K
So

ci
et

al
W

el
lb

ei
ng

D
ep

riv
at

io
n

Im
d

In
co

m
e

R
an

k
La

20
10

BB
C

W
ild

lif
e

Fi
nd

er

St
at

us
N

et
M

ys
ta

tu
s

M
ig

ui
ad

Ev
ia

je
s

G
N

O
SS

Ac
or

n
Sa

t

D
at

a
Bn

f.f
r

G
ov

U
K

im
d

en
v.

ra
nk

 2
01

0

St
at

us
N

et
O

pe
ns

im
ch

at

O
pe

n
Fo

od
Fa

ct
s

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
Ed

uc
at

io
n

R
an

k
La

20
10

LO
D

AC
BD

LS

FO
AF

-
Pr

of
ile

s

St
at

us
N

et
Sa

m
no

bl
e

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
 In

di
ca

to
rs

Af
fo

rd
ab

le
H

ou
si

ng
 S

ta
rts

St
at

us
N

et
C

or
ey

av
is

En
el

Sh
op

s

D
Bp

ed
ia

FR

St
at

us
N

et
R

ai
nb

ow
da

sh

St
at

us
N

et
M

am
al

ib
re

Pr
in

ce
to

n
Li

br
ar

y
Fi

nd
in

ga
id

s

W
W

W
Fo

un
da

tio
n

Bi
o2

R
D

F
O

M
IM

R
es

ou
rc

es

O
pe

nd
at

a
Sc

ot
la

nd
 S

im
d

G
eo

gr
ap

hi
c

Ac
ce

ss
 R

an
k

G
ut

en
be

rg

St
at

us
N

et
O

tb
m

O
D

C
L

SO
A

St
at

us
N

et
O

ur
co

ffs

C
ol

in
da

W
eb

N
m

as
un

o
Tr

av
el

er

St
at

us
N

et
H

ac
ke

rp
os

se

LO
V

G
ar

ni
ca

Pl
yw

oo
d

G
ov

U
K

w
el

lb
. h

ap
py

ye
st

er
da

y
st

d.
 d

ev
.

St
at

us
N

et
Lu

do
st

BB
C

Pr
og

ra
m

-
m

es

G
ov

U
K

So
ci

et
al

W
el

lb
ei

ng
D

ep
riv

at
io

n
Im

d
En

vi
ro

nm
en

t
R

an
k

20
10

Bi
o2

R
D

F
Ta

xo
no

m
y

W
or

ld
ba

nk
27

0a
.in

fo

O
SM

D
BT

un
e

M
us

ic
-

br
ai

nz

Li
nk

ed
M

ar
k

M
ai

l

St
at

us
N

et
D

eu
xp

i

G
ov

U
K

Tr
an

sp
ar

en
cy

Im
pa

ct
In

di
ca

to
rs

H
ou

si
ng

 S
ta

rts

Bi
zk

ai
Se

ns
e

G
ov

U
K

im
pa

ct
in

di
ca

to
rs

 e
ne

rg
y

ef
fic

ie
nc

y
ne

w
bu

ild
s

St
at

us
N

et
M

or
ph

to
w

n

G
ov

U
K

Tr
an

sp
ar

en
cy

In
pu

t i
nd

ic
at

or
s

Lo
ca

l a
ut

ho
rit

ie
s

W
or

ki
ng

 w
. t

r.
Fa

m
ilie

s

IS
O

 6
39

O
as

is

As
pi

re
Po

rts
m

ou
th

Za
ra

go
za

D
at

os
Ab

ie
rto

s
O

pe
nd

at
a

Sc
ot

la
nd

Si
m

d
C

rim
e

R
an

k

Be
rli

os

St
at

us
N

et
pi

an
a

G
ov

U
K

N
et

 A
dd

.
D

w
el

lin
gs

Bo
ot

sn
al

l

St
at

us
N

et
ch

ro
m

ic

G
eo

sp
ec

ie
s

lin
ke

dc
t

W
or

dn
et

(W
3C

)

St
at

us
N

et
th

or
nt

on
2

St
at

us
N

et
m

ku
ttn

er

St
at

us
N

et
lin

ux
w

ra
ng

lin
g

Eu
ro

st
at

Li
nk

ed
D

at
a

G
ov

U
K

so
ci

et
al

w
el

lb
ei

ng
de

pr
v.

im
d

ra
nk

 '0
7G
ov

U
K

so
ci

et
al

w
el

lb
ei

ng
de

pr
v.

im
d

ra
nk

 la
 '1

0

Li
nk

ed
O

pe
n

D
at

a
of

Ec
ol

og
y

St
at

us
N

et
ch

ic
ke

nk
ille

r

St
at

us
N

et
ge

ge
w

eb

D
eu

st
o

Te
ch

St
at

us
N

et
sc

hi
es

sl
e

G
ov

U
K

tra
ns

pa
re

nc
y

im
pa

ct
in

di
ca

to
rs

tr.
 fa

m
ilie

s

Ta
xo

n
co

nc
ep

t

G
ov

U
K

se
rv

ic
e

ex
pe

nd
itu

re

G
ov

U
K

so
ci

et
al

w
el

lb
ei

ng
de

pr
iv

at
io

n
im

d
em

pl
oy

m
en

t
sc

or
e

20
10

F
ig

u
re

1
.2

:
T

h
e

L
in

ke
d

O
p

en
D

at
a

C
lo

u
d

o
f

W
eb

K
B

s.
a

a
L

in
k
in

g
O

p
en

D
a
ta

cl
o
u

d
d

ia
g
ra

m
2
0
1
4
,

b
y

M
a
x

S
ch

m
a
ch

te
n
b

er
g
,

C
h

ri
st

ia
n

B
iz

er
,

A
n

ja
J
en

tz
sc

h
a
n

d
R

ic
h

a
rd

C
y
g
a
n

ia
k
.

h
tt

p
:/

/
lo

d
-c

lo
u

d
.n

et
/

12 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

0	

50	

100	

150	

1	
 10	
 100	
 1000	
 10000	

Media	
 Government	
 Publica6ons	

Geographic	
 Life	
 sciences	
 Cross-­‐domain	

User-­‐generated	
 Social	
 networking	

0	

20	

40	

60	

80	

100	

1	
 10	
 100	
 1000	
 10000	

Media	
 Government	
 Publica9ons	

Geographic	
 Life	
 sciences	
 Cross-­‐domain	

User-­‐generated	
 Social	
 networking	

Figure 1.3: In- (top) and out-degree (bottom) distributions of different categories of datasets.

If we take a closer look at the latest LOD version, shown in Figure 1.2, only 56.11% of the

KBs link to at least another KB, while 17.36% of them link to only one other KB. As a

matter of fact, the distribution of links across KBs is heavily skewed in the LOD cloud47.

Figure 1.3 shows the distribution of the in- and out-degrees of the KBs belonging to one of

the eight domains. Sparsely interlinked KBs appear in the periphery of the LOD cloud (e.g.,

Open Food Facts, Bio2RDF), while heavily interlinked ones lie at the center (e.g., DBpedia,

GeoNames, FOAF). Unsurprisingly, encyclopaedic KBs, such as DBpedia, or widely-used

georeferencing KBs, such as GeoNames, are interlinked with the largest number of KBs

both from the LOD center and the periphery.

Table 1.3 summarizes the top three properties that are used by RDF links across

KBs in each of eight domains. In their majority, the links capture equivalence relationships

(e.g., owl:sameAs) between partial, overlapping descriptions of the same real-world enti-

ties in different KBs. General relatedness (e.g., rdfs:seeAlso) is the second most popular

type of links, while in the social networking domain, social relations among persons (e.g.,

foaf:knows) is the most widely used linking type. Taking a closer look at the owl:sameAs

47http://linkeddata.few.vu.nl/wod analysis

13

Table 1.3: Top-3 properties used by RDF links within each topical domain in the 2014 LOD

cloud.

Category Property Usage Category Property Usage

social networking
foaf:knows 60.27%

user-generated content
owl:sameAs 53.13%

foaf:based-near 35.69% rdfs:seeAlso 21.88%
sioc:follows 34.34% dct:source 18.75%

life sciences
owl:sameAs 52.17%

geographic
owl:sameAs 64.29%

rdfs:seeAlso 43.48% skos:exactMatch 21.43%
dct:creator 21.74% skos:closeMatch 21.43%

publications
owl:sameAs 32.20%

media
owl:sameAs 81.25%

dct:language 25.42% rdfs:seeAlso 18.75%
rdfs:seeAlso 23.73% foaf:based-near 18.75%

government
dct:publisher 47.57%

cross-domain
owl:sameAs 80.00%

dct:spatial 30.10% rdfs:seeAlso 52.00%
owl:sameAs 24.27% dct:creator 20.00%

Table 1.4: Top 10 KBs based on their number of incoming owl:sameAs links.

KB # KBs linked with an owl:sameAs link

dbpedia.org 75

freebase.com 31

semanticweb.org 24

l3s.de 24

geonames.org 21

purl.org 16

fu-berlin.de 15

identi.ca 14

dbtune.org 13

w3.org 12

property, Table 1.4 shows the top 10 KBs, based on the number of incoming owl:sameAs

links48.

Due to the different participants and tools [Ferrara et al., 2013], the quality of links

discovered across KBs may also vary [Guéret et al., 2011, Papaleo et al., 2014]. In this task,

either general-purpose (e.g., Silk [Volz et al., 2009], ODD Linker [Hassanzadeh et al., 2009],

LIMES [Ngomo and Auer, 2011]) or dataset-specific tools (e.g., for LinkedGeoData [Auer

et al., 2009], LinkedMDB [Hassanzadeh and Consens, 2008], Music [Raimond et al., 2008])

can be used. The techniques underlying link discovery tools can be further refined as rule-

based or learning-based. Rule-based methods (e.g., [Volz et al., 2009]) employ hand-crafted

correspondence rules among entity descriptions. The creation of such rules is labor-intensive

and difficult to generalize across domains. Learning-based methods (e.g., [Isele and Bizer,

2012, 2013]) try to learn such complex correspondence rules, based on a given training

set of labeled examples, or on employing a manual verification phase. However, obtaining

this set of examples is often hard when the number of KBs becomes large. In a nutshell,

48http://planet-data.eu/sites/default/files/D4.5.pdf

14 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

existing link discovery tools (for an exhaustive review readers are referred to [Nentwig et al.,

2015]) are source-centric, i.e., they can be effectively deployed and tuned only for specific

datasets. However, the range of KBs which are today published in the LOD cloud (see

Figure 1.2), as well as the emergence of domain-independent techniques that holistically

extract information from the entire Web [Dalvi et al., 2012] require novel entity resolution

techniques at the Web-scale involving multiple, heterogeneous and sometimes structured-

related entity types.

Entity Resolution Challenges in the Web of Data

Entity descriptions in the Web of data are essentially characterized by:

• Large Scale. A massive volume of descriptions (in the order of millions) related to a

wide range of entity types (in the order of thousands) is not ceasing to be published

by an increasing number of KBs (in the order of hundreds). For example, in 2014,

without counting the 20.48 billion triples extracted from the semantic annotations of

Web pages [Meusel et al., 2014], more than 60B triples of entity descriptions were

published in the Web of data by 1014 open KBs (see Figure 1.2), while corporate KBs

alone already qualify as big data, such as the Knowledge Graph that describes 600M

entities using 20B triples.

• High heterogeneity. The descriptions contained in these KBs present a high degree

of semantic and structural diversity even when they concern the same entity types.

– Semantic discrepancies. Although the LOD publication guidelines49 strongly

suggest the reuse of entity names rather than the invention of new ones, in

practice, this is not the case [Hogan et al., 2012]. Moreover, rather than using

a unique classification schema, entity descriptions are annotated simultaneously

with several semantic types, not necessarily from the same vocabulary [Tonon

et al., 2013], indicating various facets for those entities.

Example 1.2 In the example of Figure 1.1, DBpedia and Freebase employ differ-

ent names for similar entities (e.g., the URI of Manhattan is dbpedia:Manhattan

vs fbase:m.0cc56)), but also for similar properties (e.g., the URI of a birth place

is dbonto:birthPlace vs fbase:people.person.place of birth). Moreover, DBpedia

provides the following semantic types for Kubrick, which are not related via sub-

sumption relationships:

<dbpedia:Stanley Kubrick, rdf:type, foaf:Person>,

<dbpedia:Stanley Kubrick, rdf:type, yago:AmericanFilmDirectors> and

<dbpedia:Stanley Kubrick, rdf:type, yago:AmateurChessPlayers>

49http://www.w3.org/DesignIssues/LinkedData.html

15

– Structural discrepancies. Even for the same semantic types of entities, quite

different sets of properties can be actually used by different descriptions both in

terms of types and number of occurrences [Duan et al., 2011].

Example 1.3 To define the position of the Eiffel Tower, DBpedia uses the prop-

erties rdf:lat and rdf:long, as in the triples: <dbpedia:Eiffel Tower, rdf:lat, 48.858223>

and <dbpedia:Eiffel Tower, rdf:long, 2.294500>. In the same KB, rdf:lat and rdf:long

are not present in the description of the Statue of Liberty; a different set of prop-

erties is used instead:

<dbpedia:Statue of Liberty, dbpprop:latDegrees, 40>,

<dbpedia:Statue of Liberty, dbpprop:latMinutes, 41>,

<dbpedia:Statue of Liberty, dbpprop:latSeconds, 21>,

<dbpedia:Statue of Liberty, dbpprop:latDirection, N>,

<dbpedia:Statue of Liberty, dbpprop:longDegrees, 74>,

<dbpedia:Statue of Liberty, dbpprop:longMinutes, 2>,

<dbpedia:Statue of Liberty, dbpprop:longSeconds, 40> and

<dbpedia:Statue of Liberty, dbpprop:longDirection, W>.

• Various forms of overlaps. Descriptions of the same real-world entity could be

provided not only among different KBs, but even within the same KB. This is due

to several reasons. Even if entity descriptions are derived from the same Wikipedia

entry, KBs rely on different information extraction tools and curation policies leading

to somehow similar descriptions of the same entity. This way, usually, descriptions

provide complementary and sometimes conflicting information regarding evolving real-

world entities. [Dalvi et al., 2012] investigates the redundancy of information that can

be found on structured data on the Web. To do this, it uses the notion of k-coverage50,

and shows, for instance, that one needs 5,000 sources to get 5-coverage of 90% of the

restaurant phone numbers, while 10 sources is sufficient to get 1-coverage of 93% of

these phone numbers. A systematic computation of the k-coverage among the KBs of

the LOD cloud is more challenging, since it involves multiple entity types. A rough

approximation of the overlap between entity descriptions in the Web of data is given by

the number of owl:sameAs and more generally relatedness links depicted in Table 1.3.

In general, a KB containing multiple descriptions for the same entity is called dirty,

as opposed to clean KBs, which do not feature such internal redundancy.

Example 1.4 In our motivating example, DBpedia and Freebase describe separately

both Stanley Kubrick and Manhattan. Freebase contains the information that Stanley

Kubrick’s parents are Gertrund Kubrick and Jacques Leonard Kubrick, whereas this

50k-coverage is defined as the fraction of entities in a database that are present in at least k different sources.

16 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

information is not covered in DBpedia. On the other hand, at the time of writing, Free-

base holds the information that Alexis Tsipras is the prime minister of Greece, while

DBpedia is out-of-date, suggesting that this position is still held by Antonis Samaras.

As a traditional form of duplicates, consider that both dbpedia:Robert Soloway and

dbpedia:Spam King refer to the same individual, Robert Soloway, who was nicknamed

the “Spam King”, while both dbpedia:Dichopogon strictus and dbpedia:Chocolate lily

refer to the same flower.

The scale, diversity and graph structuring of entity descriptions published according

to the Linked Data paradigm challenge the way descriptions can be effectively and effi-

ciently compared to decide whether they are referring to the same real-world entity. Entity

resolution at the Web scale requires novel algorithms and similarity functions that go be-

yond deduplication algorithms in data warehouses [Christen, 2012, Naumann and Herschel,

2010]. It is also worth noticing that ontology and instance matching algorithms [Otero-

Cerdeira et al., 2015, Shvaiko and Euzenat, 2013] cannot be used in this respect. In the

Web of data, the same description may instantiate several semantic types from different

vocabularies, and thus seeking for correspondences between the different ontology classes

and properties, to match the instances using them, is not feasible at large scales. We believe

that such multiple classification of instances amplifies structural heterogeneity of entity de-

scriptions and really challenges even the most sophisticated algorithms, like Paris [Suchanek

et al., 2011], aiming at a fruitful interplay between vocabulary (i.e., T-Box) and instance

(i.e., A-Box) matching.

The Value of Entity Resolution

There is an undergoing paradigm shift in the Web from a document-centric infrastructure,

where unstructured documents are interlinked with untyped hyperlinks, to an entity-centric

organization of data [Bouquet et al., 2007, Dalvi et al., 2009, 2012, Miklós et al., 2010], in

which real-word entities are described with semi-structured data in several KBs, or even as

semantic annotations of HTML pages, and can be fused, or interlinked using various types

of relationships. A core component of this transformation is our improved understanding

of the contents of documents, replacing the shallow summarization of documents sketched

out by keywords with a deeper association between documents and the entities mentioned

in them [Jin et al., 2014].

In general, descriptions from several sources need to be resolved in order to identify

and possibly fuse those that refer to the same real-world entities. For example, consider that

a number of commercial sites dispose descriptions of specialized entities, such as products,

restaurants, hotels or people. When such descriptions are extracted by semantic annota-

tions and Web tables, typically, they are marked up with a small number of general purpose

properties. So, descriptions representing the same entity can be fused to improve various

aspects of data quality [Dong and Srivastava, 2015]. In more complex cases, entity descrip-

17

tions can be annotated simultaneously with different semantic types, indicating various

facets of those entities. Interlinking such descriptions, by exploiting the several types of

available links, helps towards identifying complementary descriptions for the same entities.

Together with other technologies to allow better understanding of searchers’ intents,

an entity-centric Web infrastructure enables powerful new user experiences, from search

results that directly show key facts about people, places and things, to improved refinement

interfaces that allow searchers to quickly locate Web documents that mention only the

specific people, places or other things they are looking for [Jansen and Spink, 2006]. We are

witnessing a new generation of Web applications that rely on entity descriptions to better

serve navigational or information seeking needs of users, namely, entity-centric search [Balog

et al., 2010a,b, Blanco et al., 2011, Lin et al., 2012] and recommendations [Blanco et al.,

2013, Miliaraki et al., 2015, Yu et al., 2014]. The former semantically enrich the answers of

keyword queries with references to entities that are mentioned in the queries51, while the

latter also provides recommendations of related entities based on relationships explicitly

encoded in a KB [Fang et al., 2011].

Example 1.5 Consider that a user knows exactly what he is looking for and would like

immediate and precise answers, for instance, about Stanley Kubrick. To serve this navi-

gational request according to the entity-centric paradigm, the following process would be

engaged (Figure 1.4). Initially, a number of entity descriptions related to the entertainment

industry (e.g., film makers) have been extracted from semantic annotations of Web pages

and/or from domain specific KBs (e.g., LinkedMDB52) and cross-domain KBs (e.g., DBpe-

dia, YAGO, Freebase). Such descriptions can be possibly fused or interlinked to each other.

Then, the mentions of various entities in the user queries are recognized and matched to

the extracted entity descriptions. For example, besides Web documents related to “Stanley

Kubrick”, an entity search system would enrich the answer with the descriptions of Stan-

ley Kubrick in DBpedia and/or Freebase. To serve users willing to extend their knowledge

or simply satisfy their curiosity, an entity recommender system could provide additional

entities describing information of potential interest for the user. For example, consider the

information that Kubrick was born in Manhattan, extracted from DBpedia, that he was

married to Ruth Sobotka, extracted from YAGO, that he was the director of the movie A

Clockwork Orange, extracted from LinkedMDB, and so forth.

To foster an entity-centric organization of Web data, it is crucial to reconcile different

descriptions that refer to the same real-world entity. Entity resolution is expected to play a

catalytic role for exploratory search and discovery [Marie and Gandon, 2014] in the Web of

data. First, because it enhances fusion and interlinking of data elements describing entities,

51A process known as named-entity extraction [Bizer et al., 2009, Etzioni et al., 2005, Hoffart et al., 2013] and
disambiguation [Jin et al., 2014].

52www.linkedmdb.org

18 1. WEB OF DATA: DESCRIBING AND LINKING ENTITIES

Figure 1.4: Searching and recommending entities related to “Stanley Kubrick”.

so that the Web of data can be accessed by machines as a global data space using standard

languages, such as SPARQL. Second, because it speeds up KB construction by integrating

entity descriptions from legacy KBs with semantic annotations published along with HTML

pages or even HTML tables themselves. The faster, more complete and accurate knowledge

integration on the Web is, the better quality of service is offered by entity-centric search

and recommendations.

19

C H A P T E R 2

Matching and Resolving
Entities

As we have seen in Chapter 1, an increasing number of real-world entities are described by a

multitude of Knowledge Bases (KBs) published in the Web of data. These descriptions may

provide partial, overlapping and sometimes contradicting information for the same entities.

Understanding how two descriptions are related is an essential task to a number of entity-

centric applications in the Web of data (e.g., searching, browsing). Due to the open number

of KBs and their autonomy in publication and curation policies, two descriptions of the

same entity may significantly differ in terms of employed vocabularies and data structuring.

In this chapter, we outline the main processing steps for resolving entities at the Web scale

(Section 2.1) and explain how the similarity of highly heterogeneous descriptions can be

defined (Section 2.2).

2.1 THE PROBLEM OF ENTITY RESOLUTION

In the Web of data, the same real-world entity may be described multiple times in vari-

ous KBs (and more rarely within the same KB). These descriptions are characterized as

highly similar or somehow similar. The former case corresponds to duplicate descriptions

originating from the same knowledge source (e.g., Wikipedia) and copied by different KBs.

The latter case corresponds to alternative descriptions of the same entity eventually cov-

ering complementary aspects (e.g., information on the work or the origins of an artist).

Highly similar descriptions usually feature many common tokens in the values of common

attributes, while somehow similar descriptions have significantly fewer common tokens in

attributes that are not necessarily semantically related (via synonymy or subsumption).

Hence, two highly similar descriptions can be compared using only their content (i.e., at-

tribute values), while to decide whether two somehow similar descriptions refer to the same

real-world entity more contextual information is needed, as for example, examining the

similarity of neighbourhood descriptions (i.e., linked with different types of relationships).

Example 2.1 As a toy example, consider the entity descriptions presented in Figure 2.1.

DBpedia describes two movies, Eyes Wide Shut and A Clockwork Orange, their director

Stanley Kubrick and his place of birth Manhattan, while Freebase provides alternative

descriptions for the same four entities. When considering the tokens of the descriptions

20 2. MATCHING AND RESOLVING ENTITIES

dbpedia:A_Clockwork_Orange_(film)	

dbpedia-­‐owl:director	
 dbpedia:Stanley_Kubrick	

dbpedia-­‐owl:Work/
run5me	

“136”	

rdfs:label	
 “A	
 Clockwork	
 Orange	
 (film)”	

foaf:name	
 “A	
 Clockwork	
 Orange”	

dbpedia:Stanley_Kubrick	

dbpedia-­‐owl:birthPlace	
 dbpedia:Manha@an	

dbpedia-­‐owl:ac5veYearsEndYear	
 	
 1999-­‐01-­‐01	

dbpedia-­‐owl:ac5veYearsStartYear	
 	
 1951-­‐01-­‐01	

rdf:type	
 foaf:Person	

rdf:type	
 	
 yago:AmericanFilmDirectors	

rdf:type	
 yago:AmateurChessPlayers	

dbpedia:Eyes_Wide_Shut	

dbpedia-­‐owl:director	
 dbpedia:Stanley_Kubrick	

dbpedia-­‐owl:Work/run5me	
 “159”	

dbpedia-­‐owl:starring	
 dbpedia:Nicole_Kidman	

dbpedia-­‐owl:starring	
 dbpedia:Tom_Cruise	

rdfs:label	
 “Eyes	
 Wide	
 Shut”	

foaf:name	
 “Eyes	
 Wide	
 Shut”	

dbpedia:Manha@an	

rdf:type	
 yago:IslandsOfTheHudsonRiver	

rdfs:label	
 “ManhaYan”	

foaf:name	
 “ManhaYan”	

Dase:m.06mn7	

Zase:type.object.name	
 “Stanley	
 Kubrick”	

Zase:people.person.place_of_birth	
 	
 fbase:m.0cc56	

Zase:people.person.parents	
 fbase:m.02g68r	

Zase:people.person.parents	
 fbase:m.02g656g	

Dase:m.0cc56	

Zase:type.object.name	
 “ManhaYan”	

Zase:common.topic.alias	
 	
 “New_York_County”	

rdf:type	
 travel.travel_des5na5on	

fbase:loca5on.administra5v
e_division.capital	

fbase:m.0jvw4b_	

fbase:loca5on.administra5v
e_division.country	

fbase:m.09c7w0	

Dase:m.	
 02qcr	

Zase:type.object.name	
 “Eyes	
 Wide	
 Shut”	

Zase:ilm.film.tagline	
 “Cruise.	
 Kidman.	
 Kubrick”	

rdfs:label	
 “Eyes	
 Wide	
 Shut”	

fbase:film.film.run5me	
 fbase:m.0jx_qz	

fbase:ilm.film.soundtrack	
 fbase:m.01frx9q	

Dase:m.05ldxl	

fbase:film.film.film.directed_by	
 m.06mn7	

Zase:film.film.run5me	
 m.0jsq26	

Zase:film.film.starring	
 m.0235qd0	

Zase:film.film.starring	
 m.0jsq1s	

Figure 2.1: Multiple entity descriptions.

referring to Eyes Wide Shut, we can say that these descriptions are highly similar (i.e.,

they share 6 tokens), and deduce that they possibly stand for the same entity. However,

this is not the case when comparing the somehow similar descriptions of Stanley Kubrick;

these descriptions are also quite different with respect to the attributes used. To decide

whether the descriptions of Stanley Kubrick in DBpedia and Freebase match, we need

to consider the similarity of descriptions related to them. For instance, knowing that in

DBpedia and Freebase the descriptions for Eyes Wide Shut stand for the same entity, may

help us to decide whether the related descriptions for Stanley Kubrick (via movie director

relationship) in both KBs also refer to the same entity.

Finding somehow similar information has been studied in the context of near-

duplicate documents detection [Broder, 2000] and nearest neighbors search [Papadias, 2009].

In the context of the Web of data, in order to compare a pair of entity descriptions we need

to consider similarity of both their textual content (as in unstructured documents) and

their graph-structure (as in spatio-temporal databases). Clearly, more accurate compar-

isons can be performed if we know the semantic relationships of attributes employed in

descriptions (e.g., synonymy or subsumption), but such ontological alignment [Shvaiko and

Euzenat, 2013] is not yet systematically provided at the scale of the Web of data. It is worth

noticing that even for entity descriptions of the same type originating from the same KB

2.1. THE PROBLEM OF ENTITY RESOLUTION 21

(see Chapter 1), various sets of attributes can be employed [Duan et al., 2011], while many

combinations of attributes appear only for a single description [Neumann and Moerkotte,

2011]. In general, the typically high degree of semantic heterogeneity reflected in different

schemas makes ontology and schema matching in the Web of data an inherently complex

task [Bellahsene et al., 2011].

Based on the locality of comparisons required to decide whether two descriptions refer

to the same entity, we distinguish between pairwise and collective entity resolution. Pairwise

entity resolution (e.g., [Benjelloun et al., 2009]) compares only two entity descriptions at a

time. This comparison depends only on the data contained in these descriptions, and not

on the similarity evidence provided by others. Collective entity resolution compares a set of

related entity descriptions. This comparison heavily relies on similarity evidence provided

by neighboring entity descriptions. In a pure collective manner, entity resolution utilizes

relationships among descriptions in order to decide about possible matches (e.g., [Bhat-

tacharya and Getoor, 2006, Dong et al., 2005, Kalashnikov and Mehrotra, 2006]). In an

iterative manner, entity resolution iterates over the set of current matches and, as match

decisions are made, they are used to prompt further match decisions (e.g., [Böhm et al.,

2012, Rastogi et al., 2011]).

It is worth noticing that an alternative notion of collectiveness is considered by ma-

chine learning techniques, which examine all or part of the entity collection to learn how two

descriptions can match. This line of work includes clustering techniques (e.g., [Chaudhuri

et al., 2005, McCallum et al., 2000]) and classifiers (e.g., Bayesian networks [Verykios et al.,

2003]) and is outside the scope of this lecture. For an exhaustive review on collective entity

resolution, readers are referred to [Doan et al., 2012, Dong and Srivastava, 2015, Getoor

and Machanavajjhala, 2013, Rastogi et al., 2011].

Furthermore, it is often useful to distinguish between multiple descriptions of the

same real-world entities published within or across KBs. KBs with similar descriptions of

the same entities are referred as dirty, as opposed to clean KBs. In this respect, when an

entity resolution task considers as input a dirty entity collection, it is called dirty entity

resolution, while when it considers two clean, but possibly overlapping entity collections, it

is called clean-clean entity resolution. Traditionally, the former task targets deduplication

in data warehouses [Naumann and Herschel, 2010], while the latter interlinking, eventually

by third parties, of entities described by different KBs in the Web of data. When there is a

need to combine or merge duplicate entity descriptions to produce a single, possibly more

complete representation of that real-world entity, special-purpose data or knowledge fusion

functions are used. Since we are focusing more on entity interlinking, this second step is

not covered in this lecture. Instead, we refer to [Dong and Naumann, 2009, Dong et al.,

2014b] for more details on this topic.

Formal Definition. To abstract from the syntax of concrete data models (e.g., RDF,

relational) used to describe real-world entities, we represent an entity description as a set of

22 2. MATCHING AND RESOLVING ENTITIES

attribute-value pairs. Formally, let N be a set of attribute names and V be a set of values.

Let also E be a collection of entity descriptions and D be the domain of entity descriptions.

An entity description ei ∈ E is defined as: ei = {(aij , vij)|aij ∈ N , vij ∈ V}. We refer to the

set of attributes along with their domains in ei as the structural type of ei. We also refer to

the set Vei = {vij |(aij , vij) ∈ ei} as the values of ei. For example, the set of attribute-value

pairs describing an entity in the Web of data, essentially groups a collection of RDF triples

per subject URI (i.e., the entity name).

Entity resolution aims to discover descriptions referring to the same real-world entity,

called matches. Let us consider a pairwise comparison approach and let M be a match

function, determining whether two descriptions ei, ej ∈ E refer to the same entity. That is,

M maps each pair of entity descriptions (ei, ej) to {true, false}. M(ei, ej) = true, means

that ei, ej are matching descriptions; we denote this as ei ≈ ej . M(ei, ej) = false, indicates

that ei, ej do not match; we denote this as ei 6= ej . Formally:

Definition 2.2 Entity resolution. Let E = {e1, . . . , em} be a set of entity descriptions

and M : D ×D → {true, false} be a boolean match function. An entity resolution of E is

a partitioning P = {p1, . . . , pn} of E , such that:

(i) ∀ei, ej ∈ E : M(ei, ej) = true,∃pk ∈ P : ei, ej ∈ pk, and

(ii) ∀pk ∈ P,∀(ei, ej) ∈ pk, M(ei, ej) = true.

Intuitively, matching entity descriptions are placed in the same partition of P and

all the descriptions of the same partition match. Going back to our example of Figure 2.1,

entity resolution will ideally place similar descriptions that refer to Eyes Wide Shut, A

Clockwork Orange, Stanley Kubrick and Manhattan, respectively, and only those, in four

distinct partitions of P .

Strictly speaking, the match function should introduce an equivalence relation among

entity descriptions1 as follows [de Melo, 2013]:

(i) M(ei, ei) = true (reflexivity),

(ii) M(ei, ej) = M(ej , ei) (symmetry) and

(iii) M(ei, ej) = true ∧M(ej , ek) = true⇒M(ei, ek) = true (transitivity).

In practice, the match function is defined via a similarity function sim, measuring how

similar two entity descriptions are to each other, according to certain criteria. When the

1These formal properties stem from a strong notion of identical descriptions for which both reflexivity (e = e)
and indiscernibility of identicals (a = b → p(a) = p(b), for any property p) hold.

2.1. THE PROBLEM OF ENTITY RESOLUTION 23

Entity
descriptions

Blocking Resolved
entities

Entity
matching

Figure 2.2: Entity resolution process.

similarity between the descriptions ei, ej is over a threshold value θ, then M(ei, ej) = true.

Otherwise, M(ei, ej) = false. Specifically:

M(ei, ej) =

{
true, if sim(ei, ej) ≥ θ
false, else

,where ei, ej ∈ E .

In general, specifying the threshold value θ, especially when dealing with somehow similar

descriptions, is not trivial. To overcome the problem of setting such a threshold there have

been works on machine learning that try to automatically tune this threshold (e.g., [Bilenko

and Mooney, 2003, Christen, 2008]). Those methods reach their limits in a Web-scale entity

resolution, since they have shown significantly worse efficiency and scalability than non-

learning methods [Köpcke et al., 2010].

The underlying intuition for this definition is that the higher the similarity of two

descriptions, the more likely it is that they match, i.e., the similarity of two descriptions

is used as a hint for their matching. Furthermore, given the inherent incompleteness of

entity descriptions in the Web of data, two descriptions can only be compared using a part

of their attribute-value pairs. This assumption relaxes the strict conditions of the genuine

identity relation that should hold between pairs of descriptions and, as a result, the formal

properties that a match function should satisfy. Therefore, weakening the strict identity

requirements, leads to a notion of near-identity or strong similarity [de Melo, 2013]. Highly

similar descriptions are more likely to be identified as matches, while it is more difficult to

spot somehow similar descriptions, corresponding to matches.

Entity Resolution Process and Challenges. Figure 2.2 illustrates the general steps

involved in an entity resolution process. The core task of entity resolution (Definition 2.2)

is to decide whether two descriptions match using an adequate similarity function. For

specific domains and relatively small number of KBs, such similarity functions can be easily

defined eventually using experts’ knowledge. However, the high semantic and structural

heterogeneity of entity descriptions published in the Web of data (see Chapter 1) make

24 2. MATCHING AND RESOLVING ENTITIES

similarity computation a really complex task. In such cross-domain and large-scale entity

resolution, even deciding which is the most appropriate piece of descriptions for performing

comparisons is an open research issue. For example, do we need to care only for the values

of the descriptions, or should we consider any graph structuring of descriptions? What is a

reasonable trade-off for assessing similarity between the content-based and structure-based

similarity of two descriptions? Moving one step forward, how does schematic information,

in terms of employed attribute names and types, affect the degree of similarity (high and

somehow) of two descriptions?

Even if we assume that we can answer the above questions, the very large volume of

entity collections that we need to resolve in the Web of data is prohibitive when examining

pairwise all descriptions. In this respect, blocking is typically used as a pre-processing

step for entity resolution to reduce the number of required comparisons. Specifically, it

places similar entity descriptions into blocks, leaving to an entity resolution algorithm the

comparisons only between descriptions within the same block. Its goal is to place as many

matching descriptions as possible in common blocks, i.e., identify many matches, and only

miss as few matches as possible. The underlying assumption is that blocking allows us to

disregard comparisons between descriptions that are unlikely to be matches. For further

reducing the number of comparisons to be performed by an entity resolution task, blocking

techniques can be accompanied by block post-processing steps. Such steps make sense to

be used, when blocking results in missing only few matches, and the whole process is faster

than exhaustively performing the comparisons between all descriptions. A natural question

that arises is what is a good blocking technique for resolving entities in the Web of data.

Blocking aims at significantly reducing the number of comparisons, which possibly leads

to many missing matches. In overall, it is not straightforward to attain the best trade-

off between pruning many comparisons, while retaining the comparisons between matches,

since it is not easy to select, or even construct, the appropriate similarity function to use.

To minimize the missed matches, an iterative entity resolution process can exploit in

a pay-as-you-go fashion any intermediate results of blocking and matching, discovering new

candidate description pairs for resolution. Such iterative process may consider similarity

evidence provided by entity descriptions placed into the same block or being structurally

related in the original entity graph. We believe that an iterative approach is suitable for cop-

ing with the varying data quality (e.g., incompleteness) and loose structuring (e.g., diverse

entity graphs) of entity descriptions in the Web of data.

2.2 SIMILARITY FUNCTIONS

As we have seen in the previous section, the objective of entity resolution is to find the set

M of pairs of descriptions that correspond to the same real-world entities. This knowledge

about matching real-world entities is estimated by the set S of pairs of descriptions that,

according to a similarity function, correspond to the same entities. As we can see in Fig-

2.2. SIMILARITY FUNCTIONS 25

Figure 2.3: Ideal and realistic similarity functions in entity resolution.

ure 2.3, the choice of the similarity function determines the quality of estimating M by S.

An ideal similarity function will make the two sets coincide, but this is impossible to obtain

for all kinds of data [Wang et al., 2011]. Thus, realistic similarity functions typically lead to

discover only a fraction of the matches, as well as some non-matches. Their effectiveness is

measured in terms of the fraction of the matches identified (i.e., recall, |M ∩ S|/|M|) and

the fraction of the suggested matches that are correct (i.e., precision, |M ∩ S|/|S|). Hence,

in practice, we target at maximizing the intersection of the Venn diagram (i.e., identified

matches), while minimizing the difference with the set of matching pairs (i.e., non-matches

suggested as matches).

Clearly, the quality of estimating M by S depends both on the characteristics of

the similarity function employed to compare entity descriptions, i.e., which is the piece of

information used for comparisons and how, and the underlying formal properties of this

similarity function. Such formal properties, widely used in geometric models, are those

defining a metric space. Specifically, similarity and distance metrics are defined as follows:

Definition 2.3 Distance Metric. A distance function dist : X ×X → R is a metric, if

for any x, y, z ∈ X for a given set X, it satisfies the following conditions:

1. dist(x, y) ≥ 0 (non-negativity),

2. dist(x, y) = dist(y, x) (symmetry),

3. dist(x, y) = 0⇔ x = y (identity of indiscernibles), and

4. dist(x, z) ≤ dist(x, y) + dist(y, z) (triangle inequality).

26 2. MATCHING AND RESOLVING ENTITIES

Until recently, no formal metric definition for a similarity function had been given.

In [Chen et al., 2009], a similarity metric is defined as follows:

Definition 2.4 Similarity Metric. A similarity function sim : X ×X → R is a metric,

if for any x, y, z ∈ X for a given set X, it satisfies the following conditions:

1. sim(x, x) ≥ 0 (non-negativity),

2. sim(x, y) = sim(y, x) (symmetry),

3. sim(x, x) ≥ sim(x, y),

4. sim(x, x) = sim(y, y) = sim(x, y)⇔ x = y, and

5. sim(x, y) + sim(y, z) ≤ sim(x, z) + sim(y, y) (triangle inequality).

[Chen et al., 2009] proves that any similarity metric can be transformed to a distance metric

and vice versa.

Defining similarity functions that satisfy the formal properties of metric spaces is, in

practice, too restrictive for non-geometric models [Jacobs et al., 2000, Mu and Yan, 2010,

Santini and Jain, 1999, Skopal, 2006, Tversky, 1977]. For example, the triangle inequality

assumes that the notion of similarity is transitive. A well-known counter-example is that

a man is similar to a centaur and the centaur is similar to a horse; however, the man

is completely dissimilar to the horse [Mu and Yan, 2010, Skopal, 2006]. The suggestion

that the assessment of similarity between entity descriptions may be better described as

a comparison of their attribute-value pairs [Tversky, 1977] is supported by experimental

works [Jacobs et al., 2000], reporting that in specific domains, non-metrics show better re-

sults than metrics. Even so, as [de Melo, 2013] claims, there is no general way of determining

which attributes should count as salient in determining matching entity descriptions. As

studied in [Hogan et al., 2010], a pair of descriptions is more likely to be matching if they

share several common attribute-value pairs, while certain attributes are more appropriate

to determine matches and certain values of these attributes are more discriminant than

others.

In overall, the formal properties of metric spaces appear to be applicable to duplicates,

i.e., identical, or highly similar descriptions of the same real-world entity. However, matching

entity descriptions in the Web of data, due to their high heterogeneity, are commonly only

somehow similar, making the satisfaction of the metrics properties too rigid. Motivated by

this observation, entity resolution and blocking algorithms disregard similarity and distance

metrics, in favor of non-metrics [Araújo et al., 2012, Böhm et al., 2012, Papadakis et al.,

2013, Zhang et al., 2012b].

2.2. SIMILARITY FUNCTIONS 27

In the remaining of this chapter, we will survey the main similarity functions that

have been employed to resolve entity descriptions in the Web of data. They compare de-

scriptions either exclusively on their content (i.e., attribute values), or additionally on

their structural relations with other descriptions. Regarding the content-based similari-

ties, character-based similarity functions, taking as input a pair of strings, are very useful

when comparing the values of a fixed set of attributes, as in traditional data warehouses,

where the only data variations occur in the values of a given schema. However, such an

assumption cannot be made for entity descriptions in the Web of data, where descriptions

are loosely structured, as analyzed in Chapter 1. Hence, to overcome this problem, many

works in the Web of data use more flexible token-based similarity functions, operating on

all the values of a description, split as a set of tokens or n-grams. From a different point of

view, information-theoretic similarity functions exploit probability distributions, extracted

from data statistics. Regarding the similarity functions that also consider the structural

relations of descriptions, we divide them into tree-based, mainly applied to the relational

star/snowflake schema or XML data, and graph-based, applied to RDF data. Motivated

by the fact that, in practice, only pairs of descriptions with a high enough similarity are

of interest, we will present popular approximations of similarity functions, addressing the

scalability hurdles that arise when comparing a large number of descriptions.

2.2.1 CONTENT-BASED SIMILARITY FUNCTIONS

Character-based similarity functions Character-based functions manage to account

for typographical errors (character swaps, typos, etc.). In general, these functions allow edit

operations in order to transform one string into another, for example, by inserting, deleting

or substituting characters.

The Levenshtein distance [Levenshtein, 1966], also known as edit distance, of two

strings a and b, Levenshtein(a, b) is given by leva,b(|a|, |b|), where:

leva,b(i, j) =


max(i, j), if min(i, j) = 0

min


leva,b(i− 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i− 1, j − 1) + 1(ai 6=bi)

, otherwise.

1(ai 6=bj) is the indicator function equal to 0, when ai = bj , and equal to 1, otherwise. In-

tuitively, the Levenshtein of two strings is the the minimum number of single-character

insertions, deletions or substitutions required to change one string into the other. The nor-

malized version of this similarity, LEVsim(a, b), is used in [Böhm et al., 2012, Zhang et al.,

2012b] to measure the similarity of two string labels a, b.

LEVsim(a, b) = 1− Levenshtein(a, b)

max(|a|, |b|)
.

28 2. MATCHING AND RESOLVING ENTITIES

The Jaro similarity [Jaro, 1989] of two strings a, b is defined with respect to their common

characters. Once such characters are identified, we count the number of their transpositions

in a, b. That is,

Jaro(a, b) =
1

3

(
|c|
|a|

+
|c|
|b|

+
|c| − 0.5t

|c|

)
,

where |c| is the number of common characters in a and b; two characters are considered to

be common, if they are the same and their positions within the two strings do not differ

by more than max(|a|, |b|)/2. t is the number of transpositions occurring when the i-th

common character of a is not the same as the i-th common character of b. In general,

Jaro performs well for strings with few variations. In a similar manner, the Jaro-Winkler

similarity [Winkler, 1999] of a, b is computed taking into account their longest common

prefix.

The Levenshtein distance satisfies the formal properties of a metric, but Jaro and Jaro-

Winkler similarity functions are not symmetric, and consequently, cannot be considered as

metrics [Euzenat and Shvaiko, 2013].

Token-based similarity functions Token-based functions take as input the set of to-

kens of two descriptions, or alternatively, the set of n-grams of these descriptions, i.e.,

substrings of length n. Interestingly, such functions are not sensitive to the order of to-

kens or n-grams that are compared, which means that comparing Auguste Bartholdi and

Bartholdi Auguste leads to the maximum similarity score, since both sets contain exactly

the same tokens.

A widely used token-based function is the Jaccard similarity that compares two sets

A, B as follows:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

.

Intuitively, Jaccard similarity expresses the number of tokens two sets have in common

divided by the total number of unique tokens. Jaccard similarity is used as well in [Papadakis

et al., 2013] for computing similarities between attribute names, based on the trigrams in

their values.

The dice similarity of A, B is defined as:

dice(A,B) =
2|A ∩B|
|A|+ |B|

.

Similar to Jaccard, the dice similarity is equal to the number of tokens or n-grams in

common to both sets, relative to the average size of the total number of tokens present.

Intuitively, the more the common tokens, the higher the similarity of Jaccard compared to

dice.

2.2. SIMILARITY FUNCTIONS 29

The overlap similarity of two sets A, B is defined as:

overlap(A,B) =
|A ∩B|

min(|A|, |B|)
.

Abstractly, overlap similarity counts the number of tokens two sets have in common, divided

by the number of tokens in the smaller set. Overlap is a looser function than Jaccard and

dice, disregarding the difference in the size of the two sets. Readers are referred to Section

4.2.4 of [Augsten and Böhlen, 2013] for the formal definition of the equivalence between

Jaccard, dice and overlap similarity.

The cosine similarity additionally exploits some statistics. It compares vectors,

weighted with the TF-IDF model [Dhillon and Modha, 2001], representing tokens. Intu-

itively, the idea is that two entities are more similar if they share a token that is rare in

the collection. Specifically, cosine between two vectors ~A, ~B is defined as:

cosine(~A, ~B) =
~A · ~B

|| ~A|| || ~B||
.

A variation of cosine similarity uses soft TF-IDF for constructing the vectors, in which

model tokens are regarded as equal, when their edit distance is small and not necessarily

zero. Cosine similarity with TF-IDF weights has been used in [Papadakis et al., 2013] to

compute similarities between attribute names with respect to the vectors of their values. If

A and B represent sets of tokens, then cosine similarity can be also written as:

cosine(A,B) =
|A ∩B|√
|A||B|

.

All the token-based similarity functions are of the form:

F (A,B) =
ψ1(|A ∩B|)

ψ2(|A|, |B|, |A| ∪ |B|)
,

where ψ1 is a strictly increasing function and ψ2 is an increasing function of three vari-

ables [Egghe and Michel, 2003]. We can classify a token-based similarity function F as

strong or weak, based on the following set of properties [Egghe and Michel, 2003]:

(P1) 0 ≤ F (A,B) ≤ 1.

(P2) F (A,B) = 1⇔ A = B.

(P3) F (A,B) = 0⇔ A ∩B = ∅.

(P4) If the denominator of F is constant then F is strictly increasing with |A ∩B|.

30 2. MATCHING AND RESOLVING ENTITIES

(P1) is similar to the non-negativity of metric spaces, additionally setting the value

1, as the upper threshold of similarity. (P2) is semantically close to the identity of in-

discernibles, stating that two descriptions have an ideal similarity if and only if they are

identical. (P3) and (P4) determine the importance of the intersection for token-based sim-

ilarity functions. (P3) states that an empty-set intersection means zero similarity, while

(P4) requires a greater intersection between two descriptions to imply a greater similarity

between them, if the denominator is unchanged. A strong similarity function is one that

satisfies all these four properties. For example, Jaccard, dice and cosine similarity functions

are strong. On the other hand, if (P2) is replaced by the weaker:

(P2′) F (A,B) = 1⇔ A ⊂ B or B ⊂ A,

meaning that two descriptions can have an ideal similarity, even if they are not identical,

then a weak similarity function is one that satisfies (P1), (P2′), (P3) and (P4), like the

overlap similarity function. Note that symmetry and triangle inequality are not required

for token-based similarity functions to be labelled as strong or weak. Note also, that only

Jaccard can be considered as a metric [Clarkson, 2006, Jacox and Samet, 2008], since the

rest token-based similarity functions do not satisfy the triangle inequality [Charikar, 2002].

Information-theoretic similarity functions From a different point of view, similarity

functions used in information theory, can quantify the statistical relationship between two

descriptions, such as their interdependency. To accomplish that, these measures exploit

statistics extracted from the attributes or values of the entity collections, e.g., their co-

occurrences.

The mutual information measures the mutual dependence of two random variables

A, B. That is:

MI(A;B) =
∑
b∈B

∑
a∈A

p(a, b) ln

(
p(a, b)

p(a)p(b)

)
,

where p(a, b) is the joint probability distribution of A and B and p(a) and p(b) are the

marginal probability distributions of A and B, respectively. Intuitively, mutual information

measures the information that A and B share: it measures how much knowing one of these

variables reduces uncertainty about the other. For example, if A and B are independent,

then knowing A does not give any information about B and vice versa, so their mutual

information is 0. At the other extreme, if A is a deterministic function of B and B is a

deterministic function of A, then all information conveyed by A is shared with B, which

means that knowing A determines the value of B and vice versa. In the context of Web

tables, [Cafarella et al., 2008] uses the pointwise mutual information, PMI, to measure

the coherency score of two schemas, i.e., how well attributes a, b of a schema fit together,

defined as:

PMI(a, b) = ln

(
p(a, b)

p(a)p(b)

)
.

2.2. SIMILARITY FUNCTIONS 31

ID	
 Actor	
 Film	

S1	
 Al	
 Pacino	
 F1	

S2	
 Al	
 Pacino	
 F2	

S3	
 Marlon	
 Brando	
 F2	

ID	
 Name	
 Year	
 Ra2ng	

F1	
 The	
 Godfather	
 1972	
 9.2	

F2	
 Go<va<er,	
 The	
 72	

Figure 2.4: An example of a relational star schema.

2.2.2 RELATIONAL SIMILARITY FUNCTIONS

All functions discussed so far consider only the descriptions to be compared. Yet, additional

information regarding the relationships of the descriptions with other descriptions can be

used as well. We say that two descriptions are neighbors, if they are somehow linked, i.e.,

by using a foreign key in relational databases, a parent-child relationship in XML data, or

a triple linking the URIs of two descriptions in RDF. Here, we divide relational similarity

functions into tree-based, most notably applied to relational star/snowflake schema or XML

data, and graph-based, applied to RDF data. Relational similarity functions are typically

expressed as a linear combination of a value similarity and a neighborhood similarity of

descriptions.

Tree-based functions: When considering tree or hierarchically structured data, new chal-

lenges arise due to the relationships between the descriptions. In our discussion, without

loss of generality, we resort to a relational star schema (see for example, the toy relational

tables of Figure 2.4).

The DELPHI containment metric [Ananthakrishna et al., 2002] is a specialized simi-

larity function that can be applied to data of such type. Given two entity descriptions, in

the form of tuples, DELPHI takes into account both the similarity of their attribute values,

tcm, and the similarity of their children sets reached by following foreign keys, fkcm. For

computing tcm, we first divide tuples into token sets TS and then compute the Leven-

shtein distance of the token sets. Tokens are weighted using the IDF model. In overall, tcm

measures which fraction of one tuple T is covered by the other tuple T ′:

tcm(T, T ′) =

∑
idf(TS(T) ∩ TS(T ′))∑

idf(TS(T))
.

In turn, fkcm measures at what extent the children set CS of a tuple T is covered by

the children set of a tuple T ′, where CS of T includes all tuples referencing T from other

relations by means of a foreign key:

fkcm(T, T ′) =

∑
|CS(T) ∩ CS(T ′)|∑

|CS(T)|
.

32 2. MATCHING AND RESOLVING ENTITIES

DELPHI combines tcm and fkcm, by using a classification function, as follows:

pos(idf(TS)× pos(tcm(T, T ′)− s1) + idf(CS)× pos(fkcm(T, T ′)− s2)),

where s1, s2 are threshold values for tcm, fkcm, respectively, and pos(x) = 1, if x > 0, or

−1, otherwise. If the result equals 1, then the tuples match, otherwise they do not match.

Example 2.5 Given the tuples F1 and F2 of Figure 2.4, TS(F1) =

{The,Godfather, 1972, 9.2} and TS(F2) = {Gottvatter, The, 72}. For simplification,

assume that all tokens have equal weight, and the distance of the token sets is negligible,

i.e., consider that Godfather = Gottvatter and 1972 = 72. Then, tcm(F1, F2) = 3/4 and

tcm(F2, F1) = 1. Similarly, fkcm(F1, F2) = 1 and fkcm(F2, F1) = 1/2.

F1 and F2 match for s1 = s2 = 0.5 and weights = 1, since pos(pos(3/4− 0.5) +

pos(1− 0.5) = 1.

[Weis and Naumann, 2005] adapts DELPHI and introduces a symmetric function,

unlike DELPHI, that manages to work not only for a single branch of hierarchy, but also

for cases in which one table may have several children tables.

Graph-based functions: Compared to hierarchical data, graph-structured data poses

further challenges when calculating similarities between entity descriptions. Specifically,

the procedure of computing similarities becomes more complicated, since in addition to the

existing relationships between descriptions, cycles between them occur as well. Interestingly,

the functions of this category provide a means for handling the structural heterogeneity of

data, towards resolving entities that appear in the Web.

A graph-based similarity function can be simply built on the number of common

neighbors that two descriptions share. [Bhattacharya and Getoor, 2007] evaluates various

such functions, with the simplest one being the number of common neighbors that two

descriptions have, normalized by an adequately large constant number, such that all the

scores in the collection are less than 1. A better normalization is offered by employing the

Jaccard similarity for the sets of neighbors of two descriptions. Alternatively, the Adar

similarity [Adamic and Adar, 2003] of two descriptions ei, ej is defined as:

Adar(ei, ej) =

∑
e∈N(ei)∩N(ej) u(e)∑
e∈N(ei)∪N(ej) u(e)

,

where N(e) is the set of neighbors of a description e, and u(e) = 1
log(|N(e)|) counts the

uniqueness of e, which is inversely proportional to its number of neighbors.

Recently, LINDA [Böhm et al., 2012] proposes a similarity function for comparing

two entity descriptions taking into account: (i) the similarity of their values, and (ii) the

similarity of their neighbors. In particular, assume an entity graph G, i.e., an RDF graph

whose nodes (entity descriptions) are only URIs, thus excluding literals and blank nodes. An

2.2. SIMILARITY FUNCTIONS 33

assignment matrix X is a square binary E × E matrix, representing the knowledge for the

already identified matches between descriptions. Given G, X, the similarity, LINDAsim,

of two descriptions ei, ej is defined as:

LINDAsim(ei, ej , G,X) = Lprior(V (ei), V (ej)) + α Lcontext(C(ei), C(ej), G,X)− θ,

where Lprior is a token-based similarity function on the literal values of ei, ej , Lcontext is

a similarity function on the neighbors of ei and ej in G, α is an empirically-tuned weight

of the Lcontext similarity, and θ ensures that the scores are renormalized to values around

0. LINDAsim is not a normalized measure and it serves as a means of ranking pairs of

descriptions, based on the evidence that they are matching. The more common tokens and

common neighbors that two descriptions have, the more likely they are to match.

More specifically, Lprior is applied to the sets of literal values of the two descriptions.

It is an extension of the overlap similarity, that takes the set size difference into account.

Unlike Jaccard similarity, Lprior’s normalization is biased towards the size of the smaller

set and hence, better accounts for data heterogeneity. The reason for this bias is that, in

the Web of data, the sizes of the two sets can vary significantly, e.g., due to incomplete

information provided for an entity description in a KB, as explained in Chapter 1. Given

two sets A, B:

Lprior(A,B) =
|A ∩B|

min(|A|, |B|) + ln(|(|A| − |B|)|+ 1)
.

The Lcontext similarity of the descriptions ei, ej is:

Lcontext(C(ei), C(ej), G,X) =
∑

(rei ,nei
,wei

)

∈C(ei)

max
(rej ,nej

,wej
)

∈C(ej)

xnei
,nej
· wei · LEVsim(rei , rej).

The context C(ei) of ei in G is a set of (rei , nei , wei) tuples, where rei is a property, i.e.,

an edge in the entity graph, connecting ei to its neighbor nei and wei is the weight of

this tuple, based on how discriminative this (rei , nei) pair is. xei,ej represents the position

(ei, ej) of the assignment matrix X. Intuitively, Lcontext finds matching pairs of context

tuples and sums up their similarity values. Essentially, it counts the number of common

or matching neighbors of two descriptions, which are linked to them in a similar way, i.e.,

using a (character-based) similar property.

Example 2.6 Consider the RDF graph G of Figure 2.5. In order to compute the similarity

between e1 and e2, we first compute Lprior, which only takes literal values into account. The

literal values of e1 are the set {The, Statue,Of, Liberty}, and of e2 the set {Lady, Liberty},
so, Lprior(V (e1), V (e2)) = 1

2+ln(3) = 0.37.

Moving on to Lcontext(C(ei), C(ej), G,X), we sum up the maximum similarities of
each of the two neighbors of e1 (Eiffel and Bartholdi) to the neighbors of e2 (New York and

34 2. MATCHING AND RESOLVING ENTITIES

e1

Eiffel Bartholdi

e2

New
York

“The Statue Of
Liberty”

“Lady Liberty”

designed

designed designer

location

name label

Figure 2.5: An example RDF graph, used to evaluate LINDAsim.

Bartholdi). X is initialized as a diagonal matrix, meaning that, at first, we only know that
a description matches only with itself. So, initially, xei,ej = 1, only when ei = ej . Thus, we
only consider the contextual similarity of e1 and e2 with respect to their common neighbor
(Bartholdi) at first.

Lcontext(C(ei), C(ej), G,X) = xBartholdi,Bartholdi · w“designed” · LEVsim(“designed”, “designer”) =

= 1 · 1

log(freq(“designed”, e1))
· (1− 1

8
) =

1

log(2)
· 7

8
= 0.875.

Finally, the overall LINDAsim of ei and ej can be calculated as: LINDAsim(ei, ej , G,X) =

0.37 + 2 · 0.875− 0.7 = 1.42, given that the default, empirically-suggested values for α and

θ are 2 and 0.7, respectively. w is computed, here, as 1/log(freq(r, n)), where freq(r, n) is

the total number of occurrences of property r with entity n.

[Zhang et al., 2012b] presents a similarity function used for comparing descriptions

in an RDF graph, taking as well into consideration the similarity of their neighbors in

the graph. To compute the similarity of two descriptions, this function decomposes each

description to its set of RDF triples and computes pairwise similarities between the triples

of each description. Specifically, assume the triple ti of a description ek. The upper set of ti
is composed of all the triples that have the subject of ti as their object, i.e., all the triples

of the in-neighbors of ek that link them to ek. The lower set of ti is composed of all the

triples that have the object of ti as their subject, i.e., all the out-neighbors of ek. Then, the

upper set similarity simupper (and lower set similarity simlower, respectively) between two

triples ti, tj is defined as:

simupper(ti, tj) =

∑
x∈upper(tj)

max
y∈upper(ti)

simtriple(x, y)

|upper(tj)|
,

2.2. SIMILARITY FUNCTIONS 35

StatueOf
Liberty

Ellis
Island

Liberty
Island

Lady
Liberty

Gustave
Eiffel

“sculptor” “French”

nearby

occupation

contains

nationality

architect sculptor

Auguste
Bartholdi

France

bornIn

t1 t2

upper(t1) upper(t2)

lower(t1) lower(t2)

Figure 2.6: An example RDF graph, used to evaluate simov.

where simtriple(ti, tj) is a weighted mean of LEVsim between the labels of the sub-

jects, predicates and objects of ti and tj . Implicitly, by comparing the triples predicates,

simupper utilizes structural information about the triples. Then, the structural similar-

ity of (ti, tj) is defined as a weighted summation of their upper and lower sets similari-

ties: simul(ti, tj) = β simupper(ti, tj) + (1− β) simlower(ti, tj). Finally, the overall similar-

ity simov of ti and tj is given by: simov(ti, tj) = α simtriple(ti, tj) + (1− α) simul(ti, tj),

where α is the weight given to the similarity of the labels, over the similarity of neigh-

bors. To capture the similarity between two entity descriptions, we can then aggregate the

pairwise similarities of their triples.

Example 2.7 Consider the example of Figure 2.6, in which we want to compare ei, con-

sisting of the triple t1 = (StatueOfLiberty, sculptor, AugusteBartholdi) to ej , consisting of

the triple t2 = (LadyLiberty, architect, GustaveEiffel). To compute the overall similarity

of ei and ej , we first compute the value of simtriple(t1, t2), assigning equal weights to

subject, predicate and object. Thus:

simtriple(t1, t2) = 1/3 LEVsim(“StatueOfLiberty”, “LadyLiberty”) + 1/3 LEVsim(“sculptor”,

“architect”) + 1/3 LEVsim(“AugusteBartholdi”, “GustaveEiffel”) = 1/3 (1− 7
15

) + 1/3 (1− 8
9
) +

1/3 (1− 13
16

) = 0.707.
Then, we compute the similarity of the upper sets of t1 and t2, as: simupper(t1, t2) =

= simtriple((EllisIsland, nearby, StatueOfLiberty), (LibertyIsland, contains, LadyLiberty)) =
= 1/3 LEVsim(“EllisIsland”, “LibertyIsland”) + 1/3 LEVsim(“nearby”, “contains”) +

36 2. MATCHING AND RESOLVING ENTITIES

1/3 LEVsim(“StatueOfLiberty”, “LadyLiberty”) = 0.889. Similarly, simlower(t1, t2) =
= max(simtriple((GustaveEiffel, nationality, “French”), (AugusteBartholdi, bornIn, France)),

simtriple((GustaveEiffel, nationality, “French”), (AugusteBartholdi, occupation, “sculptor”))) = 0.5.

So, assuming equal weights again, simul(t1, t2) = (0.889 + 0.5)/2 = 0.695. Finally, the overall

similarity of ei and ej is: sim(ei, ej) = simov(t1, t2) = (0.707 + 0.695)/2 = 0.701.

2.2.3 APPROXIMATIONS OF SIMILARITY FUNCTIONS

When resolving very large collections of entity descriptions in the Web of Data, two big

data processing issues are arising: (a) how can we shorten the representation of entity de-

scriptions in main-memory and (b) how can we avoid systematically comparing all pairs

of descriptions for similarity? To address these issues, approximation techniques have been

used both for converting large sets of tokens, extracted by entity descriptions, to short sig-

natures, as well as for locating pairs of signatures that are likely to be similar [Duan et al.,

2012, Kim and Lee, 2010]. These techniques essentially adapt pioneering work for detecting

near-duplicate documents on the Web that take into account the ordering of words [Broder,

1997, Broder et al., 1998] (e.g., mirror web sites, similar news articles from different press

agencies, etc.). They rely on appropriate hash functions that preserve as much as possible

the original similarity of documents (e.g., Jaccard). Due to their approximate nature, these

techniques entail false negatives and even false positives and require a thorough tuning of

their configuration parameters to achieve a reasonable trade-off for a particular collection of

entity descriptions. In the sequel, we will briefly present the core ideas of these approxima-

tion techniques for resolving entities (for more details, readers are referred to [Rajaraman

and Ullman, 2011]).

Minhashing Minhashing is a technique tackling the inherent high-dimensionality of tex-

tual comparisons. It has been originally proposed for computing the similarity of docu-

ments, represented as small signatures rather than large sequences of k characters (called

k-shingles). Minhashing can be naturally applied for comparing two entity descriptions

based on the set of tokens they contain in their attribute values. To find subsets that have

a significant intersection, a Boolean representation of descriptions, called characteristic ma-

trix is employed. The columns of the matrix correspond to the descriptions that need to

be compared, while the rows to their tokens, from a universal set (extracted from all de-

scriptions). If a description in column c contains a token in row r, then the value of (r, c)

is 1; otherwise it is 0. In real application settings, the characteristic matrix is essentially

sparse. Only a small subset of the tokens from the universal set appears in individual en-

tity descriptions, while two descriptions contain at best only partially overlapping sets of

tokens. Minhashing is a hashing technique allowing us to reduce the number of rows (i.e.,

tokens) that need to be compared between two descriptions. The minhash value of any

column is the index of the first row in which the column has a 1, when rows are randomly

2.2. SIMILARITY FUNCTIONS 37

Figure 2.7: An example characteristic matrix (a), three random permutations h1, h2, h3 of the

rows of this matrix (b) and the resulting minhash signature matrix (c).

permuted, i.e., random row permutations play the role of hash functions. By applying n

random permutations to the rows of the matrix, a column ei will be represented by its min-

hash signature, namely (h1(ei), h2(ei), . . ., hn(ei)) where h1, h2, . . ., hn are the employed

row permutations. As we will see in the next section, Locality-Sensitive Hashing exploits

the so-constructed minhash signatures to reduce the number of columns (i.e., descriptions)

that actually need to be compared for similarity. The underlying intuition is that two de-

scriptions, agreeing on a sufficient number of minhash values, are likely to be similar and

are, thus, nominated as candidate pairs for comparison. To overcome the cost of computing

row permutations, random hash functions can be used for mapping row numbers to as many

buckets as there are rows. Hence, ordering under hi will give a random row permutation.

Example 2.8 Consider the entity descriptions e1 = {the, statue, of, liberty}, e2 = {lady,

liberty, statue} and e3 = {the, eiffel, tower}. Their characteristic matrix is depicted in

Figure 2.7 (a), while the signature matrix, produced by minhash for the three random

permutations of rows of Figure 2.7 (b), is depicted in Figure 2.7 (c). That is, the minhash

of e1 for the order specified by h2, is ‘of’, i.e., h2(e1) = 3, the minhash of e2 is ‘lady’, i.e.,

h2(e2) = 1, and the minhash of e3 is ‘tower’, i.e., h2(e3) = 2. The minhash signature (1, 3,

2) of e1 is given by the minhashes of e1, i.e., the column corresponding to e1.

Jaccard approximation via minhashing An interesting property of minhashing is

that it effectively approximates the Jaccard similarity of two sets. More precisely, the prob-

ability that the minhash function for a random permutation of rows produces the same

value for two sets is equal to the Jaccard similarity of the sets. The key idea is that for any

38 2. MATCHING AND RESOLVING ENTITIES

two sets ei and ej , the ratio of rows having 1 as minhash value in both columns (denoted as

type A) with the rows having 1 in one of the columns and 0 in the other (denoted as type

B) determines both sim(ei, ej) and the probability that h(ei) = h(ej). Let a be the number

of type A rows and b be the number of type B rows; then, sim(ei, ej) = a/(a+ b). This is

because a is the size of ei ∩ ej and a+ b is the size of ei ∪ ej . Now, consider the probability

that h(ei) = h(ej), given a random permutation of rows. If we traverse the matrix from

the top, the probability that we will see a type A row before a type B row is a/(a+ b)

(ignoring rows with 0 in both columns). But, if the first row from the top is of type A, then

h(ei) = h(ej). If the first row is of type B, then the description with a 1 gets that row as its

minhash value. However, the description with a 0 in that row surely gets some row further

down the permuted list. So, we know h(ei) 6= h(ej), if we first see a type B row. Thus, in

overall, the probability that h(ei) = h(ej) is a/(a+ b), which is also the Jaccard similarity

of ei and ej . So, we can estimate the Jaccard similarity of two descriptions by computing

the ratio of the number of the same minhash values to the number of the minhash functions.

Example 2.9 Using the minhash signature matrix of Figure 2.7 (c), we can estimate the

Jaccard similarities of e1, e2, e3. Specifically, from the columns of e1 and e2, we can assume

that sim(e1, e2) = 1/3. However, from a closer look at Figure 2.7 (a), the actual Jaccard

similarity of e1 and e2 is 2/5; remember that minhash offers only an approximation of the

Jaccard similarity. By considering more permutations of the rows, i.e., more hash functions,

we achieve a better approximation of the actual Jaccard similarity value. If we had only

considered h1 and h2, then we would have estimated the similarity of e1 to e2 as 0. By

adding an extra hash function h3, we refine our estimation as 1/3, which is closer to the

actual similarity value. As an additional example, consider that based on the signatures of

e1 and e3, we estimate their Jaccard similarity as 1/3, while their true similarity is 1/6. If

we had only used h1 and h2, then we would have estimated their similarity as 1/2.

Locality-Sensitive Hashing While the minhash signatures of all columns may fit in

main memory, comparing the signatures of all pairs of columns is still very costly (i.e.,

quadratic in the number of columns). Locality-Sensitive Hashing (LSH) relies on an ad-

equate function that tells us whether or not x and y constitute a candidate pair: a pair

of descriptions whose similarity should be evaluated. The key idea is to hash descriptions

multiple times, using a family of hash functions, in such a way that similar descriptions are

more likely to be placed into the same bucket than dissimilar ones. Any two descriptions

that hash at least once into the same bucket, for any of the employed hash functions, are

considered to be a candidate pair. The underlying assumption is that there are enough

buckets that columns are unlikely to hash to the same bucket, unless they are identical

with respect to a particular hash function. Those that do not, are false negatives; hope-

fully, these will be only a small fraction of the truly similar pairs. At the same time, LSH

2.2. SIMILARITY FUNCTIONS 39

Figure 2.8: The S-curve.

targets at not placing most of the descriptions of the dissimilar pairs to the same bucket,

and therefore these pairs will never be checked. The dissimilar pairs that are placed to the

same bucket constitute false positives, and hopefully there will be only a small number of

such pairs.

When the matrix of minhash signatures is available, we can hash its columns multiple

times, each time on a different column partition. According to this strategy, we partition the

signature matrix into b bands, each one with r rows. For each band, we use a hash function

taking vectors of r integers, namely the part of the column within that band, and hash them

to a big number of buckets. For each band, we utilize a different bucket, so that columns

with the same vector in different bands will not be placed into the same bucket. This way,

the similar columns are much more likely to become candidate pairs than dissimilar ones.

The probability that two descriptions have the same hash value (of r rows) for the same

band, follows the S-curve of Figure 2.8. Ideally, for a given Jaccard similarity threshold t,

the probability that two descriptions, whose similarity is above t, have at least one band

identical should be 1, while in the opposite case, it should be 0. In practice, the step-function

is approximated by (1/b)1/r. The blue area in Figure 2.8 represents false negatives (i.e.,

pairs of descriptions above the similarity threshold that do not share a band), while the

green area false positives. To achieve a better trade-off according to the data characteristics

of the resolved collection of entities, generalizations of the simple LSH strategy have been

proposed using families of hash functions [Rajaraman and Ullman, 2011].

40 2. MATCHING AND RESOLVING ENTITIES

2.3 DISCUSSION

In this chapter, we have presented two main research questions when resolving entities in

the Web of data:

(a) How can we effectively compare highly diverse descriptions of entities exhibiting dif-

ferent structuring?

(b) How can we efficiently compute the similarity of a very large number of entity de-

scriptions?

Regarding the first research question, we believe that for assessing somehow-similarity

of entity descriptions, it is not sufficient to compare the descriptions based only on their

content (i.e., their attribute values). We also need to consider contextual information pro-

vided, for instance, by their neighbor descriptions in the entity graph. The definition of an

adequate weighting scheme for content- and structure-based similarity of entity descriptions

remains open and clearly depends on the data characteristics of the resolved entity collec-

tion. A pragmatic approach could consider different aspects of similarity among descrip-

tions at different processing steps (see Figure 2.2). For example, content similarity could

be useful for bootstrapping the ER process (i.e., blocking), while similarity of their struc-

tural neighbors could provide valuable evidence for matching descriptions (e.g., with low

content similarity) in a pay-as-you-go way. An orthogonal issue is how schematic discrep-

ancy in terms of employed attribute names and link types affect the content or structural

similarity of descriptions. For simple cases, where there is cross-source schema agreement

(e.g., by adopting schema.org vocabularies), domain-specific matching rules can be used or

learned [Isele and Bizer, 2012]. For other cases, where there is less ontological agreement

and ontological alignment is poor, one needs to assess the discriminating ability of different

attributes and/or their values and rely on different similarity functions depending on the

involved data type if known (e.g., strings vs. numbers vs. dates). Clearly, the higher de-

gree of semantic and structural heterogeneity is exhibited by entity descriptions the more

complex becomes the matching task. A promising area of research in this respect is cross-

domain similarity search and mining [Dong, 2012, Shrivastava et al., 2011, Zhen et al.,

2015], aiming to exploit similarity of objects described by different modalities (i.e., text,

image) and contexts (i.e., facets) and support research by analogy. Such techniques could

be also beneficial for matching highly heterogeneous entity descriptions and thus support

ER at the Web scale.

Regarding the second research question, the main way to reduce the quadratic num-

ber of comparisons between descriptions required by entity resolution, is by performing a

preliminary pruning on the candidate pairs of descriptions. This pre-processing step could

be based either on LSH or on blocking, presented in the next chapter. Both require in-

vestigating the trade-off between the number of discarded non-matches and the number of

missed matches between entity descriptions. However, tuning LSH to achieve a reasonable

2.3. DISCUSSION 41

trade-off (see the S-curve of Figure 2.8) assumes an a-priori knowledge of a minimum sim-

ilarity threshold between entity description pairs, above which, such pairs are considered

as candidate matches. As we will see in Chapter 5, often, matching descriptions do not

share many common tokens and thus, have very low similarity when computed only on the

values of their attributes. Those matches would not be placed in the same bucket by any

threshold-based approach, e.g., LSH, and thus, they would not be considered as candidate

pairs. Effectively choosing a minimum similarity threshold also depends on the KBs. For

example, when seeking matches between two central KBs, a high similarity threshold can

be used, since such KBs usually have more similar values. Using a lower threshold in cen-

tral KBs would result in many false candidate pairs. Accordingly, using a high similarity

threshold in peripheral KBs, in which descriptions have lower similarity values, would yield

many missed matches (as threshold t goes to 0, the blue area in Figure 2.8 becomes signif-

icantly bigger than the green one). Consequently, applying LSH across the domains of the

Web is an open research problem, due to the difficulty in knowing or tuning a similarity

threshold that can be generalized to identify matches across several domains in an effective

and efficient way. On the contrary, blocking techniques exploit a simple similarity, based

on common tokens, rather than the Jaccard similarity metric2. Such techniques seem to be

more resilient to the inherent diversity and incompleteness of entity descriptions published

in the Web of data. Alternatively, as we will see in Chapter 4, LSH techniques have been

proposed as a pre-processing step for iterative approaches, in which the missed matches of

an iteration can be identified in a subsequent iteration.

2Recent works extend LSH for non-metric spaces [Mu and Yan, 2010], while others also address distributed LSH
computation [Bahmani et al., 2012, Silva et al., 2014].

42

C H A P T E R 3

Blocking

As we have seen in Chapter 2.1, grouping entity descriptions in blocks before comparing

them for matching is an important pre-processing step for pruning the quadratic number

of comparisons required to resolve a collection of entity descriptions. The main objective

of algorithms for entity blocking, formally defined in Section 3.1, is to achieve a reasonable

compromise between the number of comparisons suggested and the number of missed entity

matches. In Section 3.2, we briefly present traditional blocking algorithms proposed for

relational records and explain why they cannot be used in the Web of data. Then, in

Section 3.3, we detail a family of algorithms that relies on a simple inverted index of entity

descriptions extracted from the tokens of their attribute values. Hence, two descriptions

are placed into the same block if they share at least a common token. As we will see in

Section 3.4, a more precise similarity (e.g., Jaccard) comparison of two entity descriptions

can be achieved by post-processing the blocks of the inverted index and thus further reduce

the number of entity pairs that need to be compared.

3.1 THE PROBLEM OF ENTITY BLOCKING

Blocking can be seen as an indexing technique, which places similar entity descriptions into

blocks. After blocking, each description has to be compared only to others placed within

the same block and thus disregard comparisons between descriptions that are unlikely to be

matches. The two main desiderata of blocking techniques are to place (i) similar descriptions

in the same block, aiming at effectiveness, and (ii) dissimilar descriptions in different blocks,

aiming at efficiency. Clearly, it is not easy to accomplish simultaneously both (i) and (ii)

since in general, efficiency dictates skipping many comparisons, possibly leading to many

missing matches, which in turn implies low effectiveness. This is even more critical in the

context of the Web of data, in which we do not know which pieces of the descriptions are

the most appropriate to consider for computing the similarities. Hence, in practice, we are

interested in maximizing the intersection of the Venn diagram depicted in Figure 2.3 (i.e.,

true matches), while keeping a reasonable size of the difference with the set of matching

pairs (i.e., false matches).

Given a set of entity descriptions E , we formally define a blocking collection as a set

of blocks containing the descriptions in E .

3.2. BLOCKING IN TRADITIONAL DATA WAREHOUSES 43

Definition 3.1 Blocking collection. Let E be a set of entity descriptions. A blocking

collection is a set of blocks containing entity descriptions, B = {b1, . . . , bm}, such that,⋃
bi∈B

bi = E .

In general, blocking techniques are characterized by their redundancy attitude as:

(i) partitioning, that place each description into a single block, and (ii) overlapping, that

could place a description in multiple blocks. Following a partitioning approach, a wrong

decision on the block in which a description is placed, would directly result in missed

matches, if such exist. On the other hand, placing entity descriptions in multiple blocks,

as in overlapping approaches, reduces the chances of missing true matches, but entails a

greater number of comparisons. As a matter of fact, the occurrence of two descriptions in

several blocks, provides evidence regarding their similarity [Papadakis et al., 2014a]. This

way, overlapping approaches can be further divided into: (a) overlap-positive, that consider

the number of common blocks between two descriptions proportional to the likelihood

that they are matches, (b) overlap-negative, that consider the number of common blocks

between two descriptions inversely proportional to the likelihood that they are matches, and

(c) overlap-neutral, that consider the number of common blocks between two descriptions

irrelevant to the likelihood that they are matches.

3.2 BLOCKING IN TRADITIONAL DATA WAREHOUSES

Broadly, traditional blocking techniques proposed for relational data can be distinguished

between hash-based and sort-based. Hash-based techniques focus on mapping entity de-

scriptions to blocks, taking into account specific criteria on the descriptions data. That

is, descriptions are placed into blocks without performing any comparisons between them.

Sort-based approaches arrange descriptions according to a certain sequence; blocking is

performed then based on this arrangement, again without performing any comparisons.

Traditionally, both approaches rely on the existence of blocking keys, i.e., constraints on a

fixed set of attributes, based on which the descriptions are placed into blocks.

A typical hash-based blocking [Fellegi and Sunter, 1969] has been originally proposed

for tabular data. Given a blocking key, the block in which a description will end up is

determined by a similarity function1 on the value of the description for the blocking key.

Such a value is called blocking key value (BKV). This way, standard blocking produces

partitions of entity descriptions by putting descriptions with the same BKV into the same

block. So, each distinct pair of descriptions is compared at most once, since each description

is placed in exactly one block. By considering several blocking keys, we can potentially

generate many BKVs for each description, and thus place it in more than one block.

1Similarity functions in this setting usually overcome data glitches in attribute values such as typographical, or
spelling errors.

44 3. BLOCKING

Following the intuition of the overlap-positive approaches, [Gravano et al., 2001] cre-

ates multiple BKVs for a description, by converting each initial BKV into a list of q-grams,

where a q-gram is a substring of q characters. Sub-lists of this list are generated, by recur-

sively removing one q-gram at a time. Each sub-list is then converted (by concatenation)

into a string and used as a BKV. Descriptions with a common BKV are placed in the same

block. This way, typographical, or spelling errors are excused.

Example 3.2 The string “Eiffel”, in the q-gram based blocking approach, can be con-

verted to the list of bi-grams [“ei”,“if”,“ff”,“fe”,“el”]. Some of the sub-lists for “Eiffel” are

[“ei”,“if”,“ff”, “fe”,“el”], [“if”,“ff”,“fe”,“el”], [“ei”, “ff”,“fe”,“el”], and [“ei”,“ff”,“el”]. So,

descriptions with the initial BKVs “Eiffel” and “Eifel”, respectively, will be placed in some

common blocks.

In a similar way, suffixes of BKVs, i.e., sub-strings produced by removing some of

the first characters of the BKVs, can be used for blocking [Aizawa and Oyama, 2005]. Each

suffix corresponds to a distinct block, and entity descriptions containing this suffix are

inserted into this block by ignoring potential errors in the removed characters. To prevent

a large number of descriptions being placed into the same block, two thresholds are set: (i)

a threshold reflecting the minimum length of suffix strings that will be generated, and (ii)

a threshold reflecting the maximum block size, i.e., number of entity descriptions contained

in each block.

An alternative approach is to somehow sort entity descriptions and perform blocking

based on the resulting order. The underlying assumption is that matching descriptions will

become neighbors after the sorting, and thus neighbor descriptions constitute candidate

matches. [Hernàndez and Stolfo, 1995] presents a sorted neighborhood method that works

as follows. Initially, entity descriptions are ordered based on their BKV. Then, a window,

resembling a block, of fixed length slides over the ordered descriptions, each time comparing

only the contents of the window. An adaptive variation of this method is to dynamically

decide on the size of the window [Yan et al., 2007]. In this case, adjacent BKVs in the

sorted descriptions that are significantly different from each other, are used as boundary

pairs, marking the positions where one window ends and the next one starts. Hence, this

variation creates non-overlapping blocks.

Traditional blocking in MapReduce. Blocking, even as a pre-processing step for entity

resolution, is a heavy computational task. This way, several approaches exploit the MapRe-

duce programming model [Dean and Ghemawat, 2008] for parallelizing blocking algorithms

(see Chapter 3.2 of [Dong and Srivastava, 2015] for an overview of algorithmic techniques).

Abstractly, a collection of entity descriptions, given as input to a MapReduce job, is split

into smaller chunks, which are then processed in parallel. A map function, emitting inter-

mediate (key, value) pairs for each input split, and a reduce function that processes the list

3.3. BLOCKING IN THE WEB OF DATA 45

of values of an intermediate key, coming from all the mappers, should be defined. [Kolb

et al., 2012b] provides a MapReduce implementation for hash-based blocking. In the map

phase, for each description, a (BKV, description) pair is emitted. Descriptions with the

same BKV are assigned to the same reduce task. Thus, each reduce task receives a block of

descriptions and performs comparisons only between them. The MapReduce implementa-

tion of a sorted neighborhood blocking is given in [Kolb et al., 2012a]. This implementation

assumes an ordering of descriptions and requires comparing descriptions within sliding win-

dows that spread over different reduce tasks, while the map phase replicates descriptions

close to partition boundaries and forwards them to both the respective reduce task and its

successor.

Blocking techniques, thoroughly studied for relational data, assume both the avail-

ability and knowledge of the schema of the data. As a result, they cannot be used for the

Web of data, where we do not even know on which attributes entity descriptions should be

compared for similarity.

3.3 BLOCKING IN THE WEB OF DATA

To support a Web-scale resolution of heterogeneous and loosely-structured entities across

domains, blocking algorithms disregard strong assumptions about knowledge of the schema

of data and rely on a minimal number of assumptions about how entity descriptions match

within or across KBs.

Token blocking. Token blocking [Papadakis et al., 2011a] is a simple approach that relies

on the minimal assumption that matching descriptions should at least share a common

token. In this hash-based method, each distinct token t in the set of values of an entity

description defines a new block bt. Token blocking builds essentially an inverted index of

entity descriptions: each token is a key and each block forms a list that is associated with

this key. Two descriptions will be placed in the same block, if they share a token in their

sets of values. Consequently, each description will be placed into multiple blocks according

to its number of tokens.

Example 3.3 Given a single dirty entity collection consisting of the descriptions of Fig-

ure 3.1, Figure 3.2 shows the generated blocks after applying token blocking on the descrip-

tions. The pair (e1, e6) is contained in four different blocks, which typically leads to compare

these descriptions four times. Moreover, a number of pairs, such as (e1, e2), (e4, e6), (e3, e7)

and many others, leads to perform redundant comparisons, that is, comparisons that do

not return matching descriptions.

Token blocking offers a brute-force method that allows comparing entity descriptions,

even if they are considerably heterogeneous. In the remaining of this section, we will present

two extensions of token blocking, namely attribute clustering blocking, in which candidate

46 3. BLOCKING

e1 = {(about, Eiffel Tower), (architect, Sauvestre), (year, 1889), (located, Paris)}
e2 = {(about, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886), (located, NY)}
e3 = {(about, Auguste Bartholdi), (born, 1834), (work, Paris)}
e4 = {(about, Joan Tower), (born, 1938)}
e5 = {(work, Lady Liberty), (artist, Bartholdi), (location, NY)}
e6 = {(work, Eiffel Tower), (year-constructed, 1889), (location, Paris)}
e7 = {(work, Bartholdi Fountain), (year-constructed, 1876), (location, Washington)}

Figure 3.1: A set of entity descriptions.

Figure 3.2: Token blocking example.

for matching descriptions should at least share a common token, only for similar attributes

known globally, and prefix-infix(-suffix) blocking, in which candidate for matching descrip-

tions should additionally share a common URI infix.

Attribute clustering blocking. Attribute clustering blocking [Papadakis et al., 2013]

exploits schematic information of the entity descriptions in order to minimize the number

of false matches. To achieve this, prior to token blocking, it proposes an initial clustering

of attributes based on the similarities of their values as observed over the entire collection

of descriptions. Then, rather than looking for a common token regardless of the attribute

it occurs, entity descriptions are compared only on the values of similar attributes. Hence,

comparisons between descriptions that do not share a common token in a similar attribute

are discarded.

In a clean-clean entity resolution scenario, Algorithm 1 shows how to group similar

attributes. Every attribute of one collection (line 3) is connected to its most similar attribute

of the other collection (line 6) and, based on the transitive closure of connected attributes

(lines 12-13), attribute clusters are formed. Singleton clusters are merged to form a so-called

glue cluster (lines 14-20). Then, for each attribute cluster, token blocking is performed.

That is, each distinct token t in the values of an attribute belonging to a cluster c, defines a

block bc.t. This way, two entity descriptions will be placed in the same block, if they share a

3.3. BLOCKING IN THE WEB OF DATA 47

common token in their sets of values, for attributes of the same cluster. Like token blocking,

attribute clustering blocking generates overlapping blocks. Compared to the blocks created

by token blocking, it is expected to produce a larger number of smaller blocks.

Algorithm 1 Attribute-clustering

Input : Clean entity collections E1, E2

Output : Set of attribute name clusters C

N(Ei): attribute names of Ei, V (Ei): attribute values of Ei

1: links← ∅;
2: cglue ← ∅;
3: for all ni,1 ∈ N(E1) do

4: nj,2 ← getMostSim(ni,1, N(E2), V (E2));

5: if sim(ni,1.getV al(), nj,2.getV al()) > 0 then

6: links.add(ni,1, nj,2);

7: end if

8: end for

9: for all ni,2 ∈ N(E2) do

10: . . . //same as with N(E1)

11: end for

12: links′ ← transitiveClosure(links);

13: C ← getConnectedComponents(links′);

14: for all ci ∈ C do

15: if |ci| = 1 then

16: C.remove(ci);

17: cglue.add(ci);

18: end if

19: end for

20: C.add(cglue);

21: return C;

Example 3.4 Consider two clean entity collections, D1 = {e1, e2, e3, e4} and D2 =

{e5, e6, e7}, that together compose the descriptions of Figure 3.1. To find, for instance,

the attribute of D2 that is the most similar to the attribute about of D1, we compute the

similarities between the values of about (i.e., the values: Eiffel, Tower, Statue, Liberty, Au-

guste, Bartholdi, Joan) and the values of the attributes of D2. Using Jaccard similarity, we

48 3. BLOCKING

Figure 3.3: Attribute clustering blocking example: (a) most similar attribute-pairs, (b) at-

tribute clusters, (c) generated blocks.

deduce that the attribute work (with values: Lady, Liberty, Eiffel, Tower, Bartholdi, Foun-

tain) of D2 is the most similar attribute to about of D1. In a similar fashion, we identify the

pairs of the most similar attributes between D1 and D2 (Figure 3.3(a) depicts such pairs),

based on which we produce the clusters of attribute names (Figure 3.3(b)). A subset of the

blocks constructed for each cluster of attribute names is shown in Figure 3.3(c). Attribute

clustering offers higher efficiency than token blocking, i.e., it produces less comparisons, but

again, many non-matches may be placed in the same block (e.g., e4 and e6 are both placed

in block C1.T ower (Figure 3.3(c))), and same pairs of descriptions could be contained in

many blocks (e.g., e1 and e6 are placed together in four different blocks).

Prefix-infix(-suffix) blocking. From a different viewpoint, prefix-infix(-suffix) blocking

[Papadakis et al., 2012] exploits information regarding the names of the entity descriptions

published on the Web. Its basic assumption is that matching descriptions have a common

token in their literal values, or a common URI.

Specifically, given that many URIs follow a naming policy, they can be used as evi-

dence regarding possible matching descriptions. In [Papadakis et al., 2010], it is measured

that approximately 66% of the 182 million URIs of the BTC09 data set2 follow the prefix-

infix(-suffix) pattern. The prefix describes the source, i.e., domain, of the URI, the infix is

a local identifier, and the optional suffix contains either details about the format, e.g., .rdf

and .nt, or a named anchor.

2http://km.aifb.kit.edu/projects/btc-2009/

3.3. BLOCKING IN THE WEB OF DATA 49

Example 3.5 For example, in the URI “http://liris.cnrs.fr/olivier.aubert/foaf.rdf#me”,

the prefix is “http://liris.cnrs.fr”, the infix is “/olivier.aubert” and the suffix is

“/foaf.rdf#me”.

Several variations of this blocking technique were proposed. Given a set of entity

descriptions, the best-performing blocking creates one block for each distinct token in the

literal values of the descriptions and one block for each distinct infix in the URIs of the

descriptions (i.e., the name of the described entity or any other neighborhood entity). In

case an infix consists of a single token that appears in a literal, we do not construct a new

block for it. This approach is of course constrained by the extent to which common naming

policies are followed by the KB publishers. Compared to token blocking, in a favourable

scenario, it is expected to create additional blocks for the names of the descriptions, which

enables to consider matching descriptions, even when they have no common tokens in their

literal values.

Example 3.6 Figure 3.4(c) shows the blocks produced after applying prefix-infix(-suffix)

blocking to the entity descriptions of Figure 3.4(a) (actually, the descriptions of Fig-

ure 3.4(a) are the descriptions of Figure 3.1, slightly modified to exploit and understand

the characteristics of the method, while Figure 3.4(b) presents the URIs that correspond

to the identifiers of the entity descriptions).

Join-based blocking. An alternative approach for blocking is to consider string-similarity

join algorithms. In a nutshell, such algorithms construct blocks by identifying all pairs of

descriptions whose string values similarities are above a certain threshold and potentially

some pairs whose string values similarities are below that threshold. To achieve that, with-

out computing the similarity of all pairs of descriptions, string-similarity join algorithms

(e.g., [Bayardo et al., 2007, Chaudhuri et al., 2006, Xiao et al., 2011]) build an inverted

index from the tokens of the descriptions values. However, unlike token blocking, this in-

verted index is created only by the first few non-frequent tokens of each description (i.e., the

most discriminating), based on the prefix filtering principle [Chaudhuri et al., 2006]. This

principle states that, if the p-prefix of token set x is the first p tokens of x, two token sets

x and y with an intersection size |x ∩ y| ≥ t should at least share a common token in the

(|x| − t+ 1)-prefix of x and the (|y| − t+ 1)-prefix of y. Moreover, based on the observation

that

Jaccard(x, y) ≥ t⇒ |x ∩ y| ≥ t

1 + t
· (|x|+ |y|), (3.1)

we only need to index a prefix of length |x| − dt · |x|e+ 1, for every token set x, to ensure

the prefix filtering-based method does not miss any similar pair, i.e., any pair of token

sets with Jaccard similarity t or greater. To avoid generating large blocks originating from

stop words, the tokens within each description are sorted in ascending order of document

50 3. BLOCKING

Figure 3.4: Prefix-infix(-suffix) blocking example: (a) the input entity collection, (b) URI

identifiers of the descriptions, (c) generated blocks.

frequency, namely, stop words are placed last. [Bayardo et al., 2007] additionally applies a

size filtering [Arasu et al., 2006] on the sets of tokens to disregard some of the candidate

pairs, based on the fact that Jaccard(x, y) ≥ t⇒ t · |x| ≤ |y|.
Furthermore, the ppjoin+ algorithm [Xiao et al., 2008, 2011] exploits prefix- and size-

filtering, also introducing a positional filtering, i.e., the position in the ordered set of tokens,

in which a token appears, to further reduce the number of candidate pairs. Specifically, it

estimates the maximum possible intersection size of two token sets x, y, by considering

that if the first common token of x and y is the first token of x and the second token of y,

then the maximum intersection that these sets can have is 1 +min(|x| − 1, |y| − 2). For a

complete survey and experimental evaluation of string-similarity join algorithms, we refer

the reader to [Augsten and Böhlen, 2013, Jiang et al., 2014].

Example 3.7 Assume that we want to find all the pairs (ei, ej) of descriptions of Figure 3.1

with Jaccard(ei, ej) ≥ 0.7, considering only the sets of tokens in the values of these descrip-

tions. These descriptions can be transformed to (tokens in ascending order of frequency):

e1 = {Sauvestre, 1889, Eiffel, Tower, Paris},
e2 = {Bartholdi, 1886, Eiffel, Liberty, Statue, NY, Of},
e3 = {1834, Bartholdi, Auguste, Paris},

3.3. BLOCKING IN THE WEB OF DATA 51

Figure 3.5: The blocks generated by a set-similarity join method for the descriptions of Fig-

ure 3.1.

e4 = {1938, Tower, Joan},
e5 = {Bartholdi, Liberty, Lady, NY},
e6 = {1889, Eiffel, Tower, Paris},
e7 = {Bartholdi, 1876, Fountain, Washington}.
If we only index the |x| − dt · |x|e+ 1 first tokens (underlined) of each token set x, then the

resulting blocks will be those of Figure 3.5. The candidate pairs will be (e1, e6), (e2, e3),

(e2, e5), (e2, e7), (e3, e5), (e3, e7), (e5, e7), (e2, e6). Out of those, only (e1, e6) has a Jaccard

similarity above the pre-defined threshold, while the matching pair (e2, e5) has a much

lower Jaccard similarity (0.375). Additional filtering can be applied to disregard some of

the candidate pairs, based on the size- and positional-filtering principles. For example, by

applying size-filtering, we induce that it would not be possible for the pair (e2, e3) to have a

Jaccard similarity of 0.7, since |e3| < 0.7 · |e2|. The same principle can be also applied to dis-

regard the comparisons between the candidate pairs (e2, e5), (e2, e7), (e2, e6). By applying

positional-filtering, we can also disregard the pair (e3, e5), since their first common token

is the second token of e3 and the first token of e5, meaning that their maximum intersec-

tion size is 1 +min(|e3| − 2, |e5| − 1) = 3, while based on Equation (3.1), their intersection

should be at least 4.7.

Tuning the similarity threshold required by join-based algorithms is non-trivial and

it also affects the performance of such algorithms [Jiang et al., 2014]. Smaller thresholds

entail less pruning, and thus, more time. Furthermore, [Metwally and Faloutsos, 2012]

proves experimentally that algorithms based on prefix filtering are only effective when the

similarity threshold is extremely high. However, this is not the case in the Web of data,

in which highly heterogeneous descriptions, i.e., yielding very low similarity in their literal

values, can refer to the same entity.

Blocking based on frequent itemsets. In the previous methods, the constructed blocks

represent one token. A method to reduce the number of compared descriptions consists of

building blocks for sets of tokens that appear together in many entity descriptions (i.e.,

frequent itemsets [Rajaraman and Ullman, 2011]). Several variations of this problem have

been proposed. [Miliaraki et al., 2013] studies the problem of scalable finding frequent sets

of tokens that appear in specific sequences. [Kenig and Gal, 2013] introduces a technique

52 3. BLOCKING

for building blocks based on the maximal frequent itemsets identified by [Grahne and Zhu,

2005]. Abstractly, each maximal frequent itemset defines a block, and descriptions contain-

ing the tokens of a frequent itemset are placed in the block that the itemset defines. Using

frequent itemsets to construct blocks may significantly reduce the number of candidate-

for-matching pairs. However, ignoring non-frequent sets of tokens may also significantly

increase the chances of missing matches, especially between descriptions with few common

tokens.

Multidimensional blocking. Finally, [Isele et al., 2011] proposed the concept of multidi-

mensional overlapping blocks. Focusing on resolving entity descriptions based on a set of

similarity functions, this method firstly constructs a collection of blocks for each similarity

function. This way, for a specific function, similar descriptions will be placed into the same

block in the collection corresponding to this function. Then, all blocking collections are

aggregated into a single multidimensional collection, taking into account the similarities

of descriptions that share blocks. Multidimensional blocking has been implemented in the

context of the Silk Link Discovery Framework [Volz et al., 2009] that targets at identifying

links between descriptions.

Token blocking and variations in MapReduce. To cope with the large volume of

entity descriptions published in the Web of data, parallel implementations of blocking

algorithms are required. Next, we provide such implementations in MapReduce. Regarding

token blocking, for each description e, a (t, e) pair is emitted by the mapper for each token

t in the set of values of e. In the reduce phase, descriptions having a common token will

be processed by the same reduce task, i.e., they are placed in the same block. A similar

procedure is also used, for example, in [McCreadie et al., 2012] for constructing inverted

indices.

Given two clean entity collections, attribute clustering blocking can be briefly sketched

by the following steps, each representing a MapReduce job:

• Attribute Creation. In the first job, we create a list of values for each unique attribute,

in each collection, appearing in the descriptions of the collection.

• Attribute Similarities. In the second job, we compute the similarities between all at-

tribute pairs, containing attributes from different collections. To do that, we compare

attributes of each data chunk to each other, as well as to attributes of all the other

chunks, similarly to the non-approximate algorithm of [Zhang et al., 2012a].

• Best Match. In the third job, we keep for each attribute of each collection, only the

attribute of the other collection with the highest similarity score.

• Clustering and Blocking. In the final step, we associate each attribute with a cluster

id. Then, we perform token blocking, except that in each key emitted from a mapper,

there is also a cluster prefix, enabling distinctions between blocks for the same token.

3.4. BLOCK POST-PROCESSING METHODS 53

Given the infixes of the entity descriptions as input (for an infix extraction algorithm,

see [Papadakis et al., 2010]) and the descriptions themselves, the MapReduce implementa-

tion of prefix-infix(-suffix) blocking uses two different mappers, operating in parallel. The

first mapper is the one used in token blocking, applied only in the literal values of the input

descriptions. The second mapper forwards to the reducer blocks with (key, value) pairs,

where key is an infix and value is a description having this infix. In the reduce phase, all

the descriptions having a common token or infix in their literals or URIs will be placed in

the same block.

Finally, ppjoin+ is adapted in MapReduce in [Vernica et al., 2010]. This adaptation

relies on three phases. First, it produces a list of join tokens ordered by frequency count.

Next, the descriptions along with their join tokens are extracted from the dataset, dis-

tributed to the reduce tasks, which in turn produce pairs of similar descriptions. The third

phase eliminates the repeated description pairs.

3.4 BLOCK POST-PROCESSING METHODS

Most of the blocking methods are overlap-positive in the sense that their blocks provide

positive evidence for the matching likelihood of two descriptions: the more blocks the de-

scriptions share, the more likely they are to match. The main characteristic of overlap-

positive blocking methods is that they trade very high recall for very low precision. Or, in

other words, they yield a large number of suggested comparisons in their effort to achieve

high recall. In this respect, block post-processing methods attempt to reduce (i) redundant

comparisons, i.e., comparisons between descriptions that have already been considered in

a previously examined block, (ii) unnecessary comparisons, i.e., comparisons between de-

scriptions of different entity collections that have already been found matching to another

description and thus cannot produce new matches (in a clean-clean entity resolution task),

and (iii) comparisons between unlikely-to-match descriptions. [Papadakis et al., 2013] pro-

poses different block post-processing methods for each of the above cases, which could

also rely on an appropriate ordering of candidate for matching descriptions. Clearly, the

elimination of redundant and unnecessary comparisons decreases the number of performed

comparisons, while it maintains the recall of the original blocking method. However, the

order by which candidate pairs are examined affects the estimation for unlikely-to-match

descriptions and thus the overall recall of the blocking process.

For example, [Papadakis et al., 2011b] proposes a method for discarding all redundant

comparisons from any set of blocks. In essence, when two descriptions are compared in

a block, this comparison is not performed again in any other block this pair appears.

[Papadakis et al., 2011a] proposes a method for reducing unnecessary comparisons in a

clean-clean entity resolution task. To do this, before comparing a pair of descriptions,

we examine whether any of them has been previously matched with a third description.

In [Papadakis et al., 2011a, Whang et al., 2013b], blocks are ordered based on a utility

54 3. BLOCKING

Figure 3.6: The blocks of Figure 3.2 in ascending order of size (top) and the corresponding

entity index (bottom).

function (e.g., their size). The underlying assumption is that blocks placed at the highest

ranking positions are more likely to contain more matches. Thus, low-ordered blocks are

removed and the rest are examined in this specified order, until a good trade-off between

recall and reduction on the number of generated comparisons has been reached.

Example 3.8 Given the blocks of Figure 3.2 (excluding blocks containing a single de-

scription) a block post-processing method does the following. First, it sorts the blocks in

ascending order of size, as depicted in Figure 3.6 (top). Then, it removes oversized blocks

(e.g., containing more than three descriptions, like the block corresponding to the token

Bartholdi). For each entity description, it builds an index of blocks, in which this descrip-

tion appears, sorted according to the relative order of the blocks, as shown in Figure 3.6

(bottom). Finally, it discards comparisons that have been already suggested in a previous

block. E.g., the comparisons between (e2, e5) is discarded for the block Liberty, since it has

been already suggested by the block NY, as found by the indices of e2 and e5 (they have

two blocks in common, Liberty and NY, and Liberty appears after NY).

Meta-Blocking. More recently, [Papadakis et al., 2014a] proposes to reconstruct the blocks

of a given blocking collection (unlike the previous block post-processing methods) in order

to more drastically discard redundant comparisons, as well as comparisons between de-

scriptions that are unlikely to match. Meta-blocking essentially transforms a given block-

ing collection B into the blocking graph GB. Its nodes VB correspond to the descriptions

in B, while its undirected edges EB connect the co-occurring descriptions. No parallel

edges are allowed, thus eliminating all redundant comparisons. Every edge ei,j is associated

with a weight wi,j ∈ [0, 1] representing the likelihood that the adjacent entities are match-

ing candidates. The low-weighted edges are pruned, so as to discard comparisons between

unlikely-to-match descriptions.

3.4. BLOCK POST-PROCESSING METHODS 55

Different weighting schemes for edges have been proposed. More precisely, the weight

of an edge connecting two descriptions can be the number of common blocks shared by these

descriptions, or the Jaccard similarity of the sets of blocks that contain these descriptions,

or the inverse of the sum of candidate pairs contained in the common blocks of these

descriptions. These weighting schemes estimate the likelihood that two descriptions are

potentially matching based on the number of their common tokens eventually normalized by

their frequency (reflected in the size and number of common blocks they appear). Finally,

different pruning strategies exploit the information provided by a blocking graph. Two

pruning criteria can be used, namely, the minimum weight of the retained edges and the

maximum number of retained edges. With respect to its application scope, the pruning

criterion can be either global, applying to the entire blocking graph, or local, covering only

a node neighborhood.

Example 3.9 The blocks in Figure 3.2, produced after applying token blocking to the

descriptions of Figure 3.1, can be mapped to the blocking graph shown in Figure 3.7(a).

For simplicity here, we consider that each edge weight is equal to the number of blocks

shared by its adjacent descriptions. Then, different algorithms can be used to remove edges

with low weights and discard part of the unnecessary comparisons. For instance, one policy

is to discard all edges having a weight lower than the average edge weight across the entire

graph. For the blocking graph of Figure 3.7(a), the average edge weight is 1.385. The

resulting pruned blocking graph is shown in Figure 3.7(b). Finally, meta-blocking outputs

a blocking collection generated from this pruned graph by placing the adjacent entities of

every edge into a separate block. In overall, the new collection contains just 2 comparisons,

unlike the initial collection containing 18 comparisons, and does not miss any of the two

matches.

Moving forward, [Papadakis et al., 2014b] formalizes meta-blocking as a binary clas-

sification task, targeting at identifying edges that correspond to matches and non-matches

between their adjacent entity descriptions. Instead of assigning unilateral weights to the

edges (as in Figure 3.7), this method composes information about the co-occurring enti-

ties into comprehensive feature vectors. Such features can be, for example, the number of

common blocks between the two descriptions, or the number of descriptions contained in

their common blocks. The resulting feature vectors are fed into a supervised classification

algorithm that learns composite rules, instead of the simple rules of the form “if weight <

threshold then discard edge”, to effectively distinguish matching and non-matching edges

based on small, manually-created training sets. Concerning the set of features annotat-

ing the edges of the blocking graph, using more features may help make the pruning of

the non-matching edges more accurate. However, the computational cost for meta-blocking

56 3. BLOCKING

	
 Blocking	
 graph: 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Pruned	
 blocking	
 graph:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (remove	
 edges	
 with	
 weight	
 <	
 1.385)	

	

	
 e1	

e5	

e2	

e4	

e3	

1

edge weights = #common blocks 2 comparisons to identify 2 matches

	
 	
 	
 	
 	
 	
 (a)	
 	
 	
 	
 	
 	
 	
 	
 (b)	

e6	

e7	

1

1 4

1

3

1
1

1
1 1

1

1

e1	

e5	

e2	

e4	

e3	

e6	

e7	

Figure 3.7: Meta-blocking example: (a) depicts a blocking graph, which is pruned (b), to

discard unnecessary comparisons.

gets higher. Therefore, a small set of generic features that combine a low extraction cost

with high discriminatory power are suggested.

Example 3.10 Consider that each edge of the blocking graph is associated with a feature

vector [a1, a2] (not a single weight as in Figure 3.7 (a)), where a1 is the number of common

blocks shared by the adjacent descriptions, and a2 is the total number of comparisons

contained in these blocks. A composite rule (unlike the simple one used in Figure 3.7

(b)) could be “if a1 ≤ 2 and a2 > 5 then discard edge”, capturing the intuition that the

more blocks two descriptions share and the smaller these blocks are, the more likely the

descriptions match.

3.5 DISCUSSION

Given k KBs with d entity descriptions each, a brute-force entity resolution approach,

without using blocking, requires O(dk) comparisons. This is quickly prohibitive for even

moderate k or d. Instead, when with blocking, entity resolution is only applied within

blocks, reducing the comparisons to O(dkbmax
), with dbmax

being the size of the largest

block.

Clearly, blocking techniques proposed for traditional data warehouses cannot be ap-

plied to resolve entities in the Web of data. First, they consider that two descriptions

commit to the same relational schema (in most of the cases, they are seen as rows of the

same table) and second, because their similarity is computed using known blocking keys.

3.5. DISCUSSION 57

Table 3.1: Criteria for placing descriptions in the same block.

Method Criterion

Token Blocking [Papadakis et al.,
2011a]

The descriptions have a common token in their values.

Attribute Clustering Blocking [Pa-
padakis et al., 2013]

The descriptions have a common token in the values of at-
tributes that have similar values in overall.

Prefix-Infix(-Suffix) Blocking [Pa-
padakis et al., 2012]

The descriptions have a common token in their literal values,
or a common URI infix.

ppjoin+ [Vernica et al., 2010, Xiao
et al., 2008]

The descriptions have a common token in their p first tokens;
tokens are sorted in ascending order of frequency.

Frequent itemsets [Kenig and Gal,
2013]

The descriptions have the tokens of a frequent itemset in their
values.

Table 3.2: Blocking approaches with respect to the redundancy attitude and algorithmic atti-

tude.

Redundancy attitude Algorithmic

Overlapping attitude

Blocking approach P
a
rt

it
io

n
in

g

O
v
er

la
p
-p

o
si

ti
v
e

O
v
er

la
p
-n

eg
a
ti

v
e

O
v
er

la
p
-n

eu
tr

a
l

H
a
sh

-b
a
se

d

S
o
rt

-b
a
se

d

Standard blocking [Fellegi and Sunter, 1969, Kolb
et al., 2012b] X X

Q-grams [Gravano et al., 2001] X X

Suffixes [Aizawa and Oyama, 2005] X X

Sorted neighborhood [Hernàndez and Stolfo, 1995,
Kolb et al., 2012a] X X

Adaptive sorted neighborhood [Yan et al., 2007] X X

Token blocking [Papadakis et al., 2011a] X X

Attribute clustering blocking [Papadakis et al., 2013] X X

Prefix-infix(-suffix) blocking [Papadakis et al., 2012] X X

ppjoin+ [Vernica et al., 2010, Xiao et al., 2008] X X

Frequent itemsets [Kenig and Gal, 2013] X X

Given the high heterogeneity, loose structuring and varying quality of entity descriptions

in the Web of data, we need blocking techniques that rely on a minimal number of assump-

tions about how descriptions match within or across KBs. Table 3.1 summarizes, simplified,

58 3. BLOCKING

the criteria employed by blocking techniques proposed for Web data in order to place two

descriptions into the same block. The categorization of the blocking techniques presented

in this lecture with respect to the characteristics of the produced blocks (i.e., partitioning

vs. overlapping blocks) and the algorithmic approach (hash-based vs. sort-based) used are

presented in Table 3.2. Partitioning approaches are sensitive to errors, since misplaced en-

tity descriptions potentially result in missed matches. Therefore, due to the varying data

quality, they are not suited for entity resolution in the Web of data. Data heterogeneity

makes sort-based approaches not easily applicable as well, since the missing knowledge of

the schema of the data incommodes the sorting process.

In overall, existing blocking and block post-processing methods for the Web of data

rely on the tokens in the values of the descriptions. The underlying assumption that such

methods make, is that matching descriptions should be identified based only on their values.

However, as we will experimentally see in Chapter 5, information extracted from the graph-

structure of the descriptions can be also exploited, in order to identify more matches.

Towards this direction, blocking and matching phases can be employed in an iterative

fashion (see Chapter 4). Ideally, to identify matches that non-iterative blocking algorithms

miss, such iterative algorithms should take into account, on each iteration step, information

stemming not only from the values, but also from the neighborhoods of the descriptions.

59

C H A P T E R 4

Iterative Entity Resolution

As we have seen in Chapter 2.1, to minimize the number of missed matches, an iterative

entity resolution (ER) process can progressively exploit any intermediate results of block-

ing and matching, discovering new candidate description pairs for resolution, even if this

process entails additional processing cost. The main objective of the algorithms for iterative

entity resolution, which is abstractly described in Section 4.1, is to identify matches based

on knowledge gained from previously identified matches. We distinguish between merging-

based (Section 4.2) and relationship-based (Section 4.3) iterative ER approaches. In the

former, new matches can be identified by exploiting the merging of the previously located

matches, while in the latter, iterations rely on the similarity evidence provided by descrip-

tions being structurally related in the original entity graph. As we will see in Section 4.4,

iterative ER can be also interleaved with the process of blocking, where matches are sought

only within a block and if identified, they are propagated to other blocks.

4.1 THE PROBLEM OF ITERATIVE ENTITY RESOLUTION

The inherent distribution of entity descriptions in different KBs along with their signifi-

cant semantic and structural diversity yield incomplete evidence regarding the similarity

of descriptions published in the Web of data. Iterative ER approaches aim to tackle this

problem by exploiting any partial result of the ER process in order to generate new can-

didate pairs of descriptions not considered in a previous step or even to revise a previous

matching decision. From a different point of view, iterative approaches come to accomplish

the need for fair partial results within a limited time period. As an example, consider real-

time applications that cannot be able to tolerate any entity resolution process that takes

longer than a certain amount of time. For such cases, the entity resolution process can run

iteratively, so as to discover additional matches in a pay-as-you-go fashion; the more the

available time, the more the iterations for entity resolution, and so, the more the identified

matches.

Abstractly, new matches can be found by exploiting merged descriptions of previously

identified matches or relationships between entity descriptions. We call the iterative ER

approaches that build their iterations on the merging of descriptions merging-based, and

those that use entity relationships for their iteration step relationship-based. Intuitively, the

merging-based approaches deal with descriptions of the same type, e.g., all descriptions refer

60 4. ITERATIVE ENTITY RESOLUTION

KB1:Manha)an	

rdf:type	
 KB1:Loca1on	

rdfs:label	
 “Manha9an”	

foaf:name	
 “Manha9an”	

KB2:SKubrick	

foaf:name	
 “Stanley	
 Kubrick”	

KB2:place_of_birth	
 	
 KB2:MNHT	

rdf:type	
 foaf:Person	

KB2:ac1veYearsEndYear	
 7/3/1999	

KB2:directed	
 KB2:A_Clockwork_Orange	

KB2:MNHT	

KB2:name	
 “Manha9an”	

rdf:type	
 KB2:loca1on	

(b)

KB1:Kubrick	

KB1:name	
 “Stanley	
 Kubrick”	

KB1:bornIn	
 1928	

KB1:father	
 KB1:Jacques	
 Leonard	
 Kubrick	

KB1:deathPlace	
 KB1:StAlbans_United_Kingdom	

rdf:type	
 yago:AmericanFilmDirectors	

KB1:Stanley_Kubrick	

KB1:birthPlace	
 KB1:Manha9an	

KB1:bornIn	
 1928-­‐7-­‐26	

KB1:parents	
 KB1:Gertrude	
 Kubrick	

KB1:parents	
 KB1:Jacques	
 Leonard	
 Kubrick	

rdf:type	
 yago:AmericanFilmDirectors	

KB1:SKBRK	

KB1:name	
 “S.	
 Kubrick”	

KB1:birthPlace	
 KB1:Manha9an	

KB1:deathPlace	
 KB1:UnitedKingdom	

KB1:diedIn	
 1999	

(a)

KB1:SKBRK	

KB1:name	
 “S.	
 Kubrick”	

KB1:birthPlace	
 KB1:Manha9an	

KB1:deathPlace	
 KB1:UnitedKingdom	

KB1:diedIn	
 1999	

Figure 4.1: A merging-based iterative ER example (a) and a relationship-based iterative ER

example (b).

to buildings, while relationship-based approaches presume upon the relationships between

different types of entities.

Example 4.1 Consider the descriptions in Figure 4.1 (a), stemming, for example, from the

knowledge base KB1, all referring to the person Stanley Kubrick. Initially, it is difficult to

match KB1:SKBRK with any of the other descriptions, since many people named Kubrick

may have been born in Manhattan, or died in the UK, respectively. However, it is quite safe

to match the first two descriptions (KB1:Stanley Kubrick and KB1:Kubrick). By merging

the first two descriptions, e.g., using the union of their attribute-value pairs, it now becomes

easier to identify that the last description (KB1:SKBRK) is also referring to the same

person, based on the name, and places of birth and death.

Consider now the descriptions in Figure 4.1 (b), stemming, for instance, from

the knowledge bases KB1 and KB2. The descriptions on the left (KB1:SKBRK

and KB2:SKubrick) represent Stanley Kubrick, while the descriptions on the right

(KB1:Manhattan and KB2:MNHT) represent Manhattan, where Kubrick was born. Ini-

tially, it is difficult to identify the match between the descriptions on the left, based only on

the common year of death and last name. However, it is quite straightforward to identify the

match between the descriptions of Manhattan, on the right. Having identified this match,

a relationship-based iterative ER algorithm would re-consider matching KB1:SKBRK to

4.2. MERGING-BASED ITERATIVE ENTITY RESOLUTION 61

KB2:SKubrick, since these descriptions are additionally related, with the same kind of re-

lationship (birth place), to the descriptions of Manhattan that were previously matched.

Therefore, a relationship-based iterative ER algorithm would identify this new match in a

second iteration.

Interestingly, there is an important difference between the two families of iterative

approaches. Namely, which is the fact that triggers a new iteration in each family of iter-

ative approaches? Next, we highlight this by exploring the general framework of iterative

entity resolution approaches that are typically composed of an initialization and an itera-

tive phase [Herschel et al., 2012]. The goal of the initialization phase is to create a queue

capturing the pairs of entity descriptions that will be compared, or even the order for

comparing these pairs. For example, such a queue can be constructed automatically by

exhaustively computing the initial similarity of all pairs of descriptions, or can be handled

manually by domain experts, who specify, for instance, which entities will be compared. In

the iterative phase, we get a pair of descriptions from the queue, compute the similarity of

this pair to decide if it is a match, and with respect to this decision, we potentially update

the queue. Actually, the updates in this phase trigger the next iteration of entity resolution.

In merging-based approaches, when two matching descriptions are merged, the pairs in the

queue in which these descriptions participate are updated, replacing the initial descriptions

with the results of their merging. New pairs may be added to the queue as well, suggesting

the comparison of the new merged description to other descriptions. In relationship-based

approaches, when related descriptions are identified as matches, new pairs can be added

to the queue, e.g., a pair of building descriptions is added to the queue, when their archi-

tects are matching, or even existing pairs can be re-ordered. Ideally, the iterative phase

terminates when the queue becomes empty.

4.2 MERGING-BASED ITERATIVE ENTITY RESOLUTION

In merging-based iterative entity resolution, the matching decision between two descriptions

triggers a merge operation, which transforms the initial entity collection by adding the new,

merged description and potentially removing the two initial descriptions. This change also

triggers more updates in the matching decisions, since the new, merged description needs

to be compared to the other descriptions of the collection. Intuitively, the final result of

merging-based iterative entity resolution is a new set of descriptions which are the results

of merging all the matches found in the initial entity collection. In other words, each real-

world entity described in the input entity collection is represented by a single description

in the resolution results and each description in the resolution results represents a distinct

real-world entity from the input entity collection. More formally:

Definition 4.2 Merging-based entity resolution. Let E = {e1, . . . , em} be a set of

entity descriptions, M : D ×D → {true, false} be a boolean match function and µ : D ×

62 4. ITERATIVE ENTITY RESOLUTION

D → D be a partial merge function, applicable only to pairs of matching descriptions,

where D is the domain of entity descriptions. A merging-based entity resolution of E is the

smallest set of descriptions E ′, such that:

(i) ∀ei, ej ∈ E : M(ei, ej) = true,∃ek ∈ E ′ : µ(ei, ej) � ek, and

(ii) ∀ek ∈ E ′,∃el ∈ E : el � ek,

where ei � ej means that ej holds the same or more information than ei, regarding the

same real-world entity (note that ei � ei).

This definition for merging-based ER is compliant to Definition 2.2 of ER, presented in

Chapter 2, if additionally, merging is applied to each partition.

Considering the functions of matching M and merging µ as black boxes, [Benjelloun

et al., 2009] presents merging-based iterative ER strategies that minimize the number of

invocations to these potentially expensive black boxes. Merged entity descriptions are con-

sidered as new entity descriptions, hence being possible matches to other descriptions in

the collection. In the same line of work, [Benjelloun et al., 2007] introduces a family of

algorithms that distribute the workload of merging-based ER across multiple processors.

Since both works consider matching and merging as black boxes, [Benjelloun et al., 2009]

introduces a set of desirable properties that, when satisfied by those functions, lead to

higher efficiency. These properties, called ICAR properties for short, are:

• Idempotence: ∀ei,M(ei, ei) = true and µ(ei, ei) = ei.

• Commutativity: ∀ei, ej ,M(ei, ej) = true⇔M(ej , ei) = true and µ(ei, ej) = µ(ej , ei).

• Associativity: ∀ei, ej , ek, if µ(ei, µ(ej , ek)) and µ(µ(ei, ej), ek) exist, then

µ(ei, µ(ej , ek)) = µ(µ(ei, ej), ek).

• Representativity: If ek = µ(ei, ej), then for any el such that M(ei, el) = true, we also

have M(ek, el) = true.

Regarding the match function, idempotence and commutativity have been already discussed

in Chapter 2, as reflexivity and symmetry, respectively, while representativity extends tran-

sitivity, by also including the merge function. As a note, consider that if associativity does

not hold, it becomes harder to interpret a merged description, since this description depends

on the order in which the source descriptions were merged.

One of the algorithms exploiting the ICAR properties is the R-Swoosh algo-

rithm [Benjelloun et al., 2009], which operates as follows. A set E of entity descriptions

is initialized to contain all the input descriptions. Then, at each iteration, a description e is

removed from E and compared to each description e′ of the, initially empty, set E ′. If e and

e′ are found to match, then they are removed from E and E ′, respectively, and the result

4.2. MERGING-BASED ITERATIVE ENTITY RESOLUTION 63

e1

e2

e3

E E '

e2

e3

e1

E E '

e23 e1

E E '

e123

E E '

e3

e1

e2

E E '

e123

E E '

(a) (b) (c)

(d) (e) (f)

Figure 4.2: The execution of R-Swoosh for Example 4.3.

of their merging is placed into E (exploiting representativity). If there is no description e′

matching with e, then e is placed in E ′. This process continues until E becomes empty, i.e.,

there are no more matches to be found.

Example 4.3 Consider the entity descriptions:

e1 = {(name, Liberty), (architect, Bartholdi), (year-constructed, 1886)},
e2 = {(about, Statue of Liberty), (architect, Eiffel), (location, NewYork)},
e3 = {(name, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886), (locatedIn, NewYork)}.
Abstractly, it is rather difficult to say if descriptions e1 and e2 are matching. However, it is

quite safe to assume that e2 and e3 are matching. By merging these two descriptions into

a new one, e.g.,

e23 = {(name, Statue of Liberty), (architect, Bartholdi Eiffel), (year, 1886), (location, NewYork)},
it becomes easier to deduce that e1 is also matching with e23.

Figure 4.2 illustrates the execution of the R-Swoosh algorithm for the three given

entity descriptions. The set E initially contains e1, e2 and e3, while the set E ′ is initialized

as the empty set (Figure 4.2 (a)). In the first iteration, e1 is removed from E and placed

to E ′, since E ′ was previously empty (Figure 4.2 (b)). At the next iteration, e2 is removed

from E and compared to the descriptions in E ′, i.e., it is compared to e1. However, their

similarity is not high enough, so e2 is also placed in E ′ (Figure 4.2 (c)). Next, e3 is removed

from E and compared to the contents of E ′, i.e., e2 and e1. When it is compared to e2, they

are found to be matching, so a new description e23, which is the result of merging e2 with

64 4. ITERATIVE ENTITY RESOLUTION

e3, is placed in E and e2 is removed from E ′ (Figure 4.2 (d)). Next, e23 is removed from E
and compared to the only description in E ′, i.e., e1. They are found to be matching, so they

are merged as e123 and moved to E , while e1 is removed from E ′ (Figure 4.2 (e)). Finally,

e123, the only element of E , is placed into E ′ (Figure 4.2 (f)), which is given as the result

of resolving the given descriptions. Eventually, all the descriptions e1, e2 and e3 are found

to be matching.

[Galarraga et al., 2014] introduces an hierarchical agglomerative clustering (HAC)

approach, where, at any stage, a cluster of descriptions reflects the current belief that all the

descriptions in this cluster match. Initially, each description is placed in a cluster of its own.

Then, at each iteration, the two most similar clusters are merged, until the similarity of the

most similar clusters is below a threshold. The similarity function employed by clustering

can be selected from a range of Jaccard-like similarity functions, applied to the values or

the attributes of the descriptions. The similarity between two clusters is then calculated

using the single-linkage criterion, i.e., the maximum of the pairwise similarities between

the contents of each cluster. The complete-linkage, i.e., using the minimum inter-cluster

similarity, and the average-linkage criteria were experimentally proven too conservative,

leading to many missing matches. The descriptions that belong to the same cluster are

finally merged, using a union operation. That is, all the descriptions in the same cluster

are assigned the same id. To avoid the cubic, to the number of entity descriptions, time

complexity required by HAC, [Galarraga et al., 2014] employs token blocking prior to

clustering. Then, HAC is applied within each block, partitioning each block into clusters.

Clusters derived from different blocks are merged, if they share a common description.

4.3 RELATIONSHIP-BASED ITERATIVE ENTITY
RESOLUTION

In relationship-based iterative ER, the matching decision between two descriptions triggers

discovering new candidate pairs for resolution, or re-considering pairs already compared;

matched descriptions may be related to other descriptions, which are now more likely to

match to each other.

To illustrate the relationships between the descriptions of an entity collection E , usu-

ally, an entity graph GE = (V,E) is used, in which nodes, V ⊆ E , represent entity descrip-

tions and edges, E, reflect the relationships between the nodes. Then, relationship-based

ER extends the generic definition of ER (Definition 2.2), by considering the neighborhoods

of the descriptions in the match function. For example, such a match function could be of

the form:

M(ei, ej) =

{
true, if sim(nbr(ei), nbr(ej)) ≥ θ
false, else,

4.3. RELATIONSHIP-BASED ITERATIVE ENTITY RESOLUTION 65

where sim can be a relational similarity function (like the ones in Section 2.2.2) and θ is

a threshold value. Intuitively, the neighborhood nbr(e) of a node e can be the set of nodes

that contains e and all the nodes that are connected to e, i.e., nbr(e) = {ej |(e, ej) ∈ E}, or

the set of edges containing e, i.e., nbr(e) = {(e, ej)|(e, ej) ∈ E}.
[Weis and Naumann, 2006] studies the problem of iterative ER in tree data, and

in particular, in XML data. Entity descriptions correspond to XML elements that are

composed by text data or other XML elements, and domain experts specify which XML

elements are match candidates, thus, initializing a priority queue of comparisons. The notion

of entity dependency here, is used in the following sense: an XML element c depends on

another XML element c′, if c′ is a part of the description of c. Consequently, identifying the

matches of c is not independent of identifying the matches of c′. Even if two XML elements

are initially considered to be non-matches, they are compared again, if their related elements

are found matches. [Weis and Naumann, 2004] uses a similar approach that is based on

the intuition that the similarity of two elements reflects the similarity of their data, as

well as the similarity of their children. By following a top-down traversal of XML data,

the DELPHI containment metric [Ananthakrishna et al., 2002] (see Chapter 2) is used to

compare two elements.

Example 4.4 Figure 4.3 shows two different descriptions of the movie A Clockwork Orange

in XML, represented as a tree. This representation means that the element movie consists

of the elements title, year and cast, while the latter further consists of actor elements. To

identify that the two XML descriptions represent the same movie, we can start by examining

the cast of the movies. After we identify that actor a11 and actor a21 represent the same

person, Malcolm McDowell, the chances that the movies m1 and m2 match are increased.

They are further increased when we find that actors a12 and a22 also match, representing

Patrick Magee. The same matching process over all the sub-elements of m1 and m2 will

finally lead us to identify that these two descriptions match.

[Bhattacharya and Getoor, 2007] employs an entity graph, following the intuition

that two nodes, i.e., entity descriptions, are more likely to match, if their edges, reflecting

a relationship between the descriptions, connect to nodes corresponding to the same entity.

To capture this inherently iterative intuition, HAC is performed, where, at each iteration,

the two most similar (according to one of the relational similarity functions presented in

Section 2.2.2) clusters are merged, until the similarity of the most similar clusters is below

a threshold. When two clusters are merged, the similarities of their related clusters, i.e., the

clusters corresponding to descriptions which are related to the descriptions in the merged

cluster, are updated. To avoid the comparison between all the pairs of descriptions when

considering the first merge of clusters, a traditional blocking method [McCallum et al.,

2000] is employed. This specific approach is known as collective entity resolution.

66 4. ITERATIVE ENTITY RESOLUTION

Figure 4.3: Two different descriptions of the movie A Clockwork Orange and its cast in XML.

Figure 4.4: An entity graph used by collective entity resolution.

Example 4.5 Figure 4.4 shows an entity graph, in which nodes represent descriptions of

persons (actors and directors in this example) and an edge between two persons represents

a professional collaboration between the corresponding persons. For example the edge be-

tween Cruise and Kidman represents their co-starring in the movie “Eyes Wide Shut”,

directed by Kubrick, while the edge connecting Ron Howard and Nicole Kidman represents

their partnership for the movie “Far and Away”, in which Tom Cruise was also starring.

Cruise and Tom Cruise are more likely to represent the same entity, if we know that

Kidman matches with Nicole Kidman, since Kidman is a neighbor of Cruise and Nicole

Kidman is a neighbor of Tom Cruise.

Using HAC, we first place each description in a distinct cluster and then merge the

clusters with the highest similarity. For example, if we decide that the most similar pair

of descriptions, based on the values of these descriptions, is that of Kidman and Nicole

Kidman, then we merge the clusters that correspond to these descriptions. Next, we re-

calculate the similarity between Cruise and Tom Cruise and find that this is the next most

similar pair, so we also merge this pair of clusters.

4.3. RELATIONSHIP-BASED ITERATIVE ENTITY RESOLUTION 67

[Rastogi et al., 2011] proposes a framework for scaling collective entity resolution to

large datasets. This method assumes the existence of a black-box ER algorithm exploiting a

set of rules, used as evidence for matching. To achieve scalability, it runs multiple instances

of the ER algorithm in small subsets of the entity descriptions (similar to blocking). Since

some rules may require the results of more than one blocks, a message-passing framework

is proposed.

In particular, to create the subsets of the descriptions, it uses an extension of blocking,

grouping entity descriptions based on not just their similarity, but also on their relational

closeness. For example, it would place the descriptions Cruise and Kubrick of Figure 4.4 in

a common block, not because they are similar, but because they share a collaboration edge.

The initial blocks are constructed over the similarity of the descriptions using [McCallum

et al., 2000], and then, they are extended taking the boundary of each block with respect

to entity relationships. The boundary of a block b is defined as the set of descriptions e′,

for which there is another description e in b, such that e and e′ are related. After the

construction of such extended blocks, a simple message-passing algorithm is run, to ensure

that the match decisions within a block, which might influence the match decisions in other

blocks, are propagated to those other blocks. This algorithm retains a list of active blocks,

initially containing all blocks. A black-box entity resolution algorithm is run locally, for

each active block, and the newly-identified matches are added in the result set. Also, all

the blocks containing a description of the newly-identified matches, are set as active. This

iterative algorithm terminates when the list of active blocks becomes empty.

LINDA [Böhm et al., 2012] focuses on identifying matching entity descriptions in

entity graphs, constructed from an RDF graph by only considering the (subject, predicate,

object) triples, in which subject, predicate and object are URIs. The evidence of a match

between two entity descriptions is based on their common tokens, as well as the identified

sameAs links between their neighbors in the entity graph. Intuitively, the more matching

neighbors that two descriptions have, connected using similar relations, the more likely

it is that the two descriptions match. This reasoning proceeds recursively, since matching

decisions trigger similarity re-computations between the neighbors of the newly-identified

matches.

LINDA scales beyond 100 million entities, using MapReduce. Initially, the similarity

between all pairs of descriptions is computed, based on LINDAsim (see Chapter 2). Then,

the pairs of descriptions are sorted in descending order of similarity and stored in a priority

queue. Each machine holds: (i) a partition of this priority queue, defined by a modulo

operation on the first description of each pair in the queue, and (ii) the corresponding part

of the entity graph, containing the descriptions in the local priority queue partition, along

with their neighbors. The iteration step of the algorithm is that, by default, the first pair

in the priority queue is considered to be a match and is then removed from the queue and

added to the known matches. This knowledge triggers similarity re-computations, which

68 4. ITERATIVE ENTITY RESOLUTION

affect the priority queue by enlarging it, when the neighbors of the new match are added

again to the queue, re-ordering it, when the neighbors of the identified match move higher

in the rank, or shrinking it, by applying transitivity and a unique match per KB constraint.

The latter just assumes that an entity description in a KB can only match to one other

description in a second KB, i.e., each KB is considered to be clean. The algorithm stops when

the priority queue is empty, or when a specific number of iterations has been reached. The

only information that is sent on the network is messages about which pairs of descriptions

require similarities re-computations.

Example 4.6 Figure 4.5 shows an execution example of the LINDA system for the entity

graph shown at the bottom, in which e3 and e4 belong to the same KB, while e1, e2 and

e5 belong to a second KB. The identified matches are represented by a 1 in the binary

symmetric matrix, on the top left corners. The entity pair priority queue (depicted as PQ

on the top right corners) is initialized and then the top pair (e1, e4) is considered a match

(Figure 4.5 (a)). This causes the removal of (e2, e4) and (e1, e3) from PQ, because of the

unique match per KB constraint (Figure 4.5 (b)). Since e1 matches with e4, it cannot match

with any other description from the KB of e4, and vice versa. The new match also causes

a re-ordering of PQ. This happens, because the similarity between e2 and e3 is increased,

since e2 is a neighbor of e1 and e3 is a neighbor of e4, and they both connect to the matching

descriptions with the same predicate (“knows”). So, in Figure 4.5 (c), the top pair, which

is by default considered a match, is (e2, e3). This causes the removal of the pair (e5, e3),

again, due to the unique match per KB constraint. After this step, PQ becomes empty and

the algorithms terminates, yielding the matches shown in the matrix of Figure 4.5 (c), also

illustrated with dashed lines in the entity graph.

An alternative initialization of the algorithm is shown in Figure 4.5 (d), assuming

that the algorithm is run on a two-cluster node. The priority queue is divided into two

partitions, based on a modulo operation on the first description of the queue. Specifically,

pairs starting with e1 and e2 are sent to the first node (Node 1), while pairs starting with

e5 are sent to the second node (Node 2). Each node also gets the corresponding partition

of the entity graph, containing all the descriptions of its PQ partition, along with their

immediate neighbors, as shown at the bottom of Figure 4.5 (d). The same algorithm then

runs locally, on each node of the cluster, sharing the knowledge of the identified matches.

[Dong et al., 2005] presents a hybrid approach, based on both partial merging re-

sults between descriptions and relations between descriptions, exploiting a graph-based

model for iterative ER. In this case, a dependency graph is constructed, in which a node

represents the similarity between a pair of entity descriptions and an edge represents the

dependency between the matching decisions of two nodes. Hence, if the similarity of a pair

of descriptions changes, then we know that the neighbors of this pair might need a simi-

larity re-computation. The dependencies between the matching decisions are distinguished

4.3. RELATIONSHIP-BASED ITERATIVE ENTITY RESOLUTION 69

Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e1 – e4

e2 – e4

e1 – e3

e5 – e3

e2 – e3

…

e3 e4

e2 e1

e5

knows

knows

Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e2 – e4

e1 – e3

e2 – e3

e5 – e3

…

e3 e4

e2 e1

e5

knows

knows

Matches e1 e2 e3 e4 e5

e1 1 0 0 1 0

e2 1 1 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e2 – e3

e5 – e3

…

e3 e4

e2 e1

e5

knows

knows

Matches e1 e2 e3 e4 e5

e1 1 0 0 0 0

e2 1 0 0 0

e3 1 0 0

e4 1 0

e5 1

PQ

e1 – e4

e2 – e4

e1 – e3

e2 – e3

…

e3 e4

e2 e1

e5
knows

knows

PQ

e5 – e3

e5 – e4

…

Node 1

Node 2

Node 1

Node 2

(a) (b)

(c) (d)

Figure 4.5: An execution example of LINDA. (a) PQ initialization, (b) PQ update, (c) new

matches are found, (d) distributed version.

between boolean and real-valued. Boolean dependencies reflect the case in which the sim-

ilarity of a node only depends on whether the descriptions of its neighbor node match or

not, while in real-valued dependencies, the similarity of a node depends on the similarity of

the descriptions of its neighbor node. Boolean dependencies are further divided into strong,

implying that if a node corresponds to a match, then its neighbor pair should also be a

match, and weak, implying that if a node corresponds to a match, then the similarity of

its neighbor pair is increased. Initially, all nodes are added to a priority queue. On each

iteration, a node is removed from the queue and if the similarity of the node is above a

threshold value, its descriptions are merged, aggregating their attribute values, in order to

enable further matching decisions. In addition, if the similarity value of this node has in-

creased, its neighbor nodes are added to the priority queue. This iterative process continues

until the priority queue becomes empty.

70 4. ITERATIVE ENTITY RESOLUTION

[Altowim et al., 2014] exploits the dependency graph of [Dong et al., 2005] in a

progressive entity resolution setting, in which the goal is to identify as many matches as

possible within a specified cost budget (e.g., time or number of comparisons)1. An initial

blocking is used, to avoid building a dependency graph with all the description pairs. Ini-

tially, this approach divides the total cost budget into several windows. For each window,

a resolution plan, i.e., which nodes will be resolved next and in what order, is generated,

based on the trade-off between the benefit and the cost of resolving those nodes. The cost

of a plan is the summation of the instantiation cost of each block, i.e., the cost of find-

ing the description pairs in this block, which depends upon where the blocks are stored

(in memory/disk/cloud), and the resolution cost of every node2. The benefit of a plan is

determined by how many matches are expected to be found by this plan (direct benefit),

and how useful it will be to declare those pairs as matches, in identifying more matches

within the cost budget (indirect benefit). The algorithm terminates when the cost budget

has been reached, and all the unresolved pairs are considered non-matches, since, statisti-

cally, matches are significantly fewer than non-matches. More recently, [Papenbrock et al.,

2015] introduces a progressive blocking method that gradually increases the window size

of sorted neighborhood (see Chapter 3.2). Specifically, it performs a local lookahead - if

the descriptions at positions (i, j) are found to match, then the descriptions at (i+ 1, j)

and (i, j + 1) are immediately compared, since they have a high chance of matching. The

lookahead step is performed recursively also for the newly found matches of a previous

lookahead, thus preferring locally promising comparisons in the otherwise static execution.

[Gruenheid et al., 2014] examines the case of incremental ER when new descriptions

are added to an entity collection. In general, the approach proceeds in three steps. First,

it performs blocking, and second, for descriptions in the same block, it computes pairwise

similarity to construct a graph, in which each node represents a description and each edge

between two nodes has a weight reflecting the similarity of the corresponding nodes. Third,

it conducts graph clustering, within blocks, such that descriptions of the same entity belong

to the same cluster. For resolving the new descriptions in an incremental way, it takes as

input only the result of the previous ER process, i.e., the clusters of descriptions within

blocks, that are connected in the graph to the newly added descriptions, along with these

descriptions. Then, correlation clustering3 is applied on this set of descriptions, and the

new result of ER is achieved after replacing the previous clusters of descriptions with the

new ones. It is proved that this method gives optimal results for incremental ER, if optimal

methods are employed for correlation clustering. However, correlation clustering is an NP-

complete problem, hence, optimal algorithms for it are not feasible for big data; in practice,

1According to [Whang et al., 2013b], at any time, a progressive ER algorithm yields more matches than a
non-progressive one, while both yield the same final results.

2The matching decision is based on the application of several similarity functions, one for each of the attributes
of a description with a fixed schema.

3Correlation clustering groups a set of descriptions into the optimum number of clusters without specifying that
number in advance.

4.4. ITERATIVE BLOCKING 71

[Gruenheid et al., 2014] exploits polynomial-time approximation algorithms for correlation

clustering that lead to good quality results. Similarly, [Welch et al., 2012] uses the ER

results of [Bellare et al., 2013] to incrementally resolve the entities provided as queries in

real-time. Again, the entity described in a query is either added to an existing cluster,

corresponding to a distinct real-world entity, or creates a new cluster, if it does not match

with any other description.

[Whang and Garcia-Molina, 2014] further considers that our understanding of data,

along with the corresponding matching rules between entity descriptions, evolve frequently.

To deal with this aspect, in an incremental manner, it investigates when and how previous

materialized ER results can be exploited in order to save work and not re-run ER from

scratch. For a comprehensive overview of the challenges and the optimal solutions proposed

in the research literature regarding the problem of incremental ER, the readers are referred

to Chapter 3.3 of [Dong and Srivastava, 2015].

4.4 ITERATIVE BLOCKING

Recent works have proposed using an iterative ER process, interleaved with blocking. Specif-

ically, in iterative blocking, ER is applied to the results of blocking and the results of each

iteration potentially alter the initial blocks, triggering a new iteration. Potentially, the

block modifications can be either based on relationships between descriptions that have

been matched, or on the results of their merging.

[Whang et al., 2009] introduces a merging-based approach for iterative blocking.

The intuition here is that the entity resolution results of a processed block, may help

identifying more matches in another block. Unlike other blocking techniques (Chapter 3),

it has an additional phase, where newly created entity descriptions in a block (the result

of merging the matches) are distributed to other blocks. This process examines one block

at a time, looking for matches. When a match is found in a block, the resulting merging of

the descriptions that match is propagated to all other blocks, replacing the initial matching

descriptions. This way, the comparisons between the same pair of descriptions in different

blocks are saved and, in addition, more matches can be identified efficiently. The same block

may be processed multiple times, until no new matches are found. This work employs a

disk-based algorithm that scales the process of iterative blocking, by fetching data from

the disk. Blocks are stored in segments of fixed size, not exceeding the memory size, on the

disk. Then, one segment is processed at a time.

Example 4.7 Figure 4.6 shows the process of iterative blocking [Whang et al., 2009], given

an initial blocking collection, as the one shown in Figure 4.6 (a). One block is processed

at a time, starting from b1. In this block, the pair (e1, e4) is found to be matching. The

matching descriptions are merged into a new description e14, representing both. Hence, in

the next step (Figure 4.6 (b)), both e1 and e4 are replaced, in any block that they appear,

72 4. ITERATIVE ENTITY RESOLUTION

merge	

e12
b2	

e1,	
 e2,	

e3,	
 e4	

b1	

e1,	
 e4,	

e5	

b3	

e2,	
 e5	

b6	

e1,	
 e4	

b4	

e2,	
 e3	

b5	

e1,	
 e4	

e14

merge	

e23

b2	

e14,	
 e2,	

e3	

b1	

e14,	
 e5	

b3	

e2,	
 e5	

b6	

e14	

b4	

e2,	
 e3	

b5	

e14	

b2	

e14,	
 e23	

b1	

e14,	
 e5	

b3	

e23,	
 e5	

b6	

e14	

b4	

e23	

b5	

e14	

merge	

e235

e14 is compared to e2 and e3
e1 is not compared to e4 again

	
 	
 	
 	
 	
 	
 	
 	
 	
 (a)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (b)	
 	
 	

b2	

e14,	
 e235	

b1	

e14,	
 e235	

b3	

e235	

b6	

e14	

b4	

e235	

b5	

e14	

Result = {e14, e235}
The result is the outcome of entity
resolution (not blocking)

Continue, until no new merges are generated at an iteration.

	
 	
 	
 	
 	
 	
 	
 	
 	
 (c)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (d)	
 	
 	

Figure 4.6: An example showing the process of iterative blocking.

Figure 4.7: The general structure of HARRA.

by e14. Then, the process moves to the next block b2, in which a second match is identified,

between e2 and e3. Similarly, these descriptions are merged as e23 and replaced in any block

they appear by e23 (Figure 4.6 (c)). This iterative process terminates when no new merges

are generated in an iteration (Figure 4.6 (d)) and the union {e14, e235} of the descriptions

is returned as the result of iteratively resolving the initial blocking collection.

4.5. DISCUSSION 73

HARRA [Kim and Lee, 2010] extends iterative blocking, by employing LSH. Unlike

the basic LSH (see Section 2.2.3), which hashes input descriptions to different buckets,

corresponding to blocks, in multiple hash tables (one for each band of their minhash signa-

tures), HARRA employs an Iterative Locality-Sensitive Hashing (I-LSH) technique, which

reduces space and time requirements, by using a single, re-usable hash table. Specifically,

it examines one band at a time, a process illustrated in Figure 4.7. Before placing an entity

description in a block, based on its minhash signature for this band, the description is

compared to the contents of the block. If matches are found in this block, then the result

of merging these descriptions is placed in the block. Otherwise, the description is placed

in the block without any changes. When all descriptions have been scanned, the input is

reset with all the descriptions in the hash table, and hashed again until a specific number

of iterations has been reached, or the reduction in the number of comparisons is already

satisfactory, or no more matches are identified. This way, only one hash table has to be

kept in memory on each iteration, avoiding excessive memory requirements for hash tables

and candidate pairs of descriptions.

[Malhotra et al., 2014] introduces a parallel, LSH-accelerated iterative blocking tech-

nique. The first step is to run a parallel LSH-based blocking via minhashing, with MapRe-

duce. In the next step, a merging-based iterative ER algorithm, like R-Swoosh [Benjelloun

et al., 2009], is run on each block, resulting in partially resolved entities, since it is possible

for descriptions to be placed into more than one blocks. This means that the same descrip-

tion may be merged with some descriptions in a block and with some other descriptions in

another block. Respecting transitivity, all these descriptions should also be merged. This

is achieved by computing the connected components in a graph, in which an edge connects

two nodes, i.e., descriptions, if they belong to the same, partially resolved entity. All the

connected components are then merged. The latter step is built on the Pregel programming

paradigm [Malewicz et al., 2010], implemented by Giraph4, which is argued to perform bet-

ter than MapReduce in such scenaria. An alternative approach for the last step, overcoming

the load imbalance between small and large blocks, is to perform, for each description, the

comparisons between itself and all other descriptions with which it shares blocks.

4.5 DISCUSSION

The inherent distribution of entity descriptions in different KBs along with their signifi-

cant semantic and structural diversity yield incomplete evidence regarding the similarity

of descriptions published in the Web of data. Hence, typical ER approaches consisting of

distinct blocking and matching phases may result in a significant number of missed matches

especially between central and peripheral KBs in the LOD cloud (see Chapter 5). Iterative

ER approaches aim to tackle this problem by exploiting any partial result of the ER process

in order to generate new candidate pairs of descriptions not considered in a previous step or

4http://giraph.apache.org/

74 4. ITERATIVE ENTITY RESOLUTION

identified
matches

execution time

A

B

t

Figure 4.8: A progressive ER algorithm A, compared to a typical ER algorithm B.

even to revise a previous matching decision. Moving forward, recent works have suggested

iteratively generating the results of an ER process in a progressive, pay-as-you-go fashion.

Their main goal is not to identify all possible matches, by potentially re-considering the

same candidate pairs of descriptions as early iterative ER approaches (something that is

prohibiting in the Web scale), but to dynamically plan an ER strategy that will lead to as

many matches as possible, given a time constraint. Figure 4.8 illustrates the underlying:

a progressive ER algorithm A, at any specific time point t, has identified more matches

than a typical ER algorithm B, while, ideally, they have both identified the same matches

eventually.

Existing iterative approaches that are based on merges, typically exploit content-

based similarity functions (see Section 2.2.1), applied on the merge result of matching

descriptions, since the content of a merge result is different from the content of the in-

dividual descriptions that compose it. Merging-based iterative ER is mostly suitable for

deduplication, i.e., a dirty ER task, since the merge operation may not be applicable to the

descriptions of autonomous KBs in the Web of data. On the other hand, iterative approaches

that are based on entity relationships, typically exploit relational similarity functions, like

the ones discussed in Section 2.2.2. Specifically, these approaches revise their matching de-

cisions, based on the propagation of similarity from neighborhood descriptions that have

been identified to match. Finally, existing iterative blocking algorithms, interleaving entity

resolution with blocking, are based on merges. Hence, they are also more suited for a dirty

ER task. Inherently, they follow a sequential execution model, since the results of ER in

one block directly affect other blocks.

75

C H A P T E R 5

Experimental Evaluation of
Blocking Algorithms

In this chapter, we present the experimental framework we have designed for a critical

assessment of blocking algorithms. In particular, we describe the datasets and the measures

we employed to study the behavior of the blocking algorithms under different semantic and

structural characteristics of entity descriptions in the Linked Open Data (LOD) cloud.

Then, we analyze the quality and performance of the evaluated blocking techniques, taking

into consideration the specific features of each dataset. Finally, we present the results of

blocking when different kinds of links, other than owl:sameAs, are used as ground truth

and conclude with a discussion of the lessons learned from this analysis.

In our evaluation, we use the adaptation of token blocking ToB, attribute cluster-

ing blocking AtC and prefix-infix(-suffix) blocking PIS in MapReduce. All these blocking

techniques are based on the notion of common tokens, which is the core of token-based

similarity functions (see Section 2.2). Both ToB and PIS can be used with either clean-

clean Cl or dirty Di entity collections, while AtC is suitable for Cl collections. Moreover,

the process of AtC requires a similarity function; we use Jaccard similarity over the set of

trigrams from the values (similar to [Papadakis et al., 2013]). For our experiments, we have

used a cluster of 16 Ubuntu 12.04.3 LTS servers (virtual machines), each with 8 CPUs,

8GB RAM and 60GB of hard disk capacity, placed in a local network with network speed

around 500 MB/s. One of the nodes served only as a master node and the rest were slave

nodes. Each node could run simultaneously 4 map or reduce tasks, while each task had

a heap size of 1250 MB available. Finally, we used the ∼okeanos1 GRNET cloud service,

Apache Hadoop 1.2.0 and Java version 1.7.0 25 from OpenJDK.

5.1 DATASETS

Our empirical study relies on real data from the Billion Triples Challenge dataset of 20122

(BTC12), DBpedia 3.5, the Kasabi data publishing platform3 and the Linked Archives Hub

project4.

1okeanos.grnet.gr
2km.aifb.kit.edu/projects/btc-2012/
3archive.org/details/kasabi
4data.archiveshub.ac.uk/

76 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

To capture the differences in the heterogeneity and semantic relationships of entity

descriptions, we distinguish between data originating from sources in the center and the

periphery of the LOD cloud. In general, central KBs, such as DBpedia and Freebase are

derived from a common source, Wikipedia, from which they extract information regarding

an entity. Such entity descriptions often refer to the original wiki page and they feature

synonym attributes whose values share a significant number of common tokens. Since they

have been exhaustively studied in the literature, entity descriptions across central LOD

KBs are heavily interlinked using in their majority owl:sameAs links5. In our experiments,

we used DBpedia (version 3.7) and Freebase, both coming from BTC12 (BTC12DBpedia

and BTC12Freebase, respectively), as well as the raw infoboxes dataset from DBpedia 3.5

(Infoboxes), i.e., essentially two different versions of DBpedia. We additionally included

a movies dataset6, used in [Papadakis et al., 2013], extracted from DBpedia movies and

IMDB, in order to verify the results of this work and validate the correctness of our algo-

rithms.

On the other hand, KBs in the periphery of the LOD cloud are far more thematically

diverse and thus, sparsely interlinked with central KBs. Due to their cross-domain nature,

we believe that they can benefit from entity resolution and blocking algorithms in the

Web of data. In our experiments, we considered the BTC12Rest, the BBCmusic and the

LOCAH datasets. BTC12Rest originates from the BTC12 dataset, which, in turn, consists

of multiple KBs like DBLP (with bibliographic data), geonames and drugbank. BBCmusic

originates from Kasabi and contains descriptions regarding music bands and artists, which

are extracted from MusicBrainz and Wikipedia. For LOCAH, we used the latest published

version at Archives hub (on March 4th, 2014). This, rather small dataset links descriptions

of people, from UK archival institutions, with their corresponding descriptions in DBpedia.

Table 5.1 provides detailed statistics about these datasets, regarding the number of

contained triples, entity descriptions, attributes, as well as the average number of attribute-

value pairs per description. We have also included the number of distinct entity types,

taken as the distinct values of the property rdf:type, when provided. Since in Infoboxes,

this property is not available, we used the values of the wikiPageUsesTemplate instead. It

is interesting to observe that BTC12DBpedia contains more types than attributes. This is

due to the fact that DBpedia entities may have multiple types from taxonomic ontologies

like Yago. Note also that IMDB is the dataset with the highest number of attribute-value

pairs per description. We have finally included in each dataset the number of duplicate entity

descriptions based on our ground truth, i.e., entity descriptions that have been reported to

be equivalent (via owl:sameAs links) across all datasets of our testbed. Taking into account

the transitivity of equality, those descriptions should be regarded as matches, too.

5DBpedia is the one with the highest in-degree while 80% of cross source links in LOD are owl:sameAs [Schmacht-
enberg et al., 2014].

6l3s.de/ papadakis/erFramework.html

5.1. DATASETS 77

Table 5.1: Datasets characteristics.

B
T

C
1
2
D

B
p
e
d
ia

I
n
fo

b
o
x
e
s

B
T

C
1
2
R

e
s
t

B
T

C
1
2
F
r
e
e
b
a
s
e

B
B

C
m

u
s
ic

L
O

C
A

H

D
B

p
e
d
ia

m
o
v

I
M

D
B

RDF triples 102,306,242 27,011,880 849,656 25,050,970 268,759 12,932 180,680 816,012

entity descriptions 8,945,920 1,638,149 31,668 1,849,180 25,359 1,233 27,615 23,182

avg. attribute-value pairs per
description

11.44 16.49 26.83 13.55 10.60 10.49 6.54 35.20

attributes 36,354 31,857 518 8,323 29 14 5 7

entity types 258,202 5,535 33 8,232 4 4 1 1

attributes/entity types 0.14 5.76 15.7 1.01 7.25 3.5 5 7

duplicates 0 0 863 12,058 372 250 0 0

Table 5.2: Characteristics of datasets with different types of links to BTC12DBpedia.

a
ir

p
o
r
t
s

a
ir

li
n
e
s

t
w

it
t
e
r

b
o
o
k
s

ia
t
i

w
w

w
2
0
1
2

RDF triples 238,973 15,465 6,743 2,993 378,130 11,772

entity descriptions 12,294 1,141 2,932 748 31,868 1,547

avg. attribute-value pairs per
description

19.44 13.55 2.30 4.00 11.87 7.61

link umbel:isLike umbel:isLike dct:subject dct:subject dct:subject dct:coverage foaf:based near

links 12,269 1,217 20,671 1,605 23,763 7,833 1,562

To investigate the ability of existing blocking algorithms in recognizing relatedness

links beyond the owl:sameAs among entity descriptions, we finally considered the Kasabi

airports and airlines datasets, containing data linked to DBpedia, which is the dataset

with the highest number of references, with the umbel:isLike property. This property is

used to associate entities that may or may not be equivalent, but are believed to be so. The

twitter dataset contains data for the presentations of an ESWC conference. It is linked to

DBpedia with the dct:subject property, which captures relatedness of entities to topics and

it is also used in the books and iati datasets. Books describes books listed in the English

language section of Dutch printed book auction catalogues of collections of scholars and

religious ministers from the 17th century. Iati contains data from the International Aid

Transparency Initiative. Iati is also connected to DBpedia with the dct:coverage property,

which associates an entity to its spatial or temporal topic, its spatial applicability, or the

jurisdiction under which it is relevant. Finally, the www2012 dataset contains data from

the WWW2012 conference, linked to DBpedia with the foaf:based near property, which

associates an entity to an abstract notion of location. Table 5.2 details the type and the

number of links of these datasets to DBpedia.

In this setting, we combine BTC12DBpedia with each of the datasets of Table 5.1 to

produce the entity collections presented in Table 5.3, on which we finally ran our experi-

ments.

• D1 combines BTC12DBpedia with Infoboxes. Since it contains two versions of the same

dataset, it is considered as a homogeneous collection. This is the biggest collection in

78 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

Table 5.3: Entity collections characteristics.

D1 D2 D3 D4 D5 D6

RDF triples 129,318,122 103,155,898 127,357,212 102,575,001 102,319,174 996,692
entity descriptions 10,584,069 8,977,588 10,795,100 8,971,279 8,947,153 50,797
avg attribute-value pairs

12.22 11.49 11.80 11.43 11.44 19.62
per description
attributes 68,211 36,872 44,677 36,383 36,368 12
entity types 263,737 258,232 266,434 258,206 258,205 1

matches 1,564,311 30,864 1,688,606 23,572 1,087 22,405
matches (incl. duplicates) 1,564,311 31,727 1,700,664 23,944 1,337 22,405

matches/non-matches 1.07 · 10−7 1.09 · 10−7 1.02 · 10−7 1.04 · 10−7 9.85 · 10−8 3.5 · 10−5

matches/non-matches
(dirty)

2.79 · 10−8 7.87 · 10−10 2.92 · 10−8 5.95 · 10−10 3.34 · 10−11 1.74 · 10−5

%matches with matching
neighbors (sampled)

86.3% 25.5% 0.007% 30.1% 59.8% 0%

comparisons (w/o blocking)

clean-clean 1.47 · 1013 2.83 · 1011 1.65 · 1013 2.27 · 1011 1.1 · 1010 6.4 · 108

dirty 5.6 · 1013 4.03 · 1013 5.83 · 1013 4.02 · 1013 4 · 1013 1.29 · 109

terms of triples, as well as attributes. It also contains the highest percentage of matches

with matching neighbors (from a sample of 1,000 matches), i.e., entity descriptions

that are either identical or known matches.

• D2 combines BTC12DBpedia with BTC12Rest. Since it is constructed by many dif-

ferent datasets, it is the most heterogeneous collection. Note that BTC12Rest has the

highest number of attributes per entity type.

• D3 combines BTC12DBpedia with BTC12Freebase. It is the biggest collection in terms

of entity descriptions, matches, entity types and comparisons.

• D4 combines BTC12DBpedia with BBCmusic. It is the collection with the lowest

number of attribute-value pairs per entity description.

• D5 combines BTC12DBpedia with LOCAH. LOCAH is the smallest dataset, both in

terms of triples and entity descriptions.

• D6 combines DBpedia movies and IMDB, as originally used in [Papadakis et al., 2013].

It is the most homogeneous collection, since both of its datasets contain descriptions

only of movies (i.e., a single entity type) using the smallest number of attributes among

all collections. However, the significantly greater (even by six orders of magnitude,

compared to the other collections) ratio of matches to non-matches is not typical of

the collections we can find in the Web of data.

Following the distinction of our datasets between central and peripheral, we also

distinguish our collections between central (D1, D3 and D6), composed of only central

datasets and peripheral (D2, D4 and D5), part of which are peripheral datasets. For all

these collections, we consider both their clean-clean and dirty versions. In practice, for our

5.1. DATASETS 79

Table 5.4: Definitions for pairs of descriptions, based on whether they appear in a common

block, or not.

Ground-truth
match non-match

Blocking result
candidate match TP FP

not a candidate match FN TN

datasets, the clean-clean and dirty versions of a collection are the same; their distinction

serves only as a means for measuring how well a blocking technique can identify links across

different datasets and within the same dataset. We finally combine BTC12DBpedia with

each peripheral dataset of Table 5.2 to produce entity collections for studying the ability

of blocking algorithms to discover different relatedness attributes.

GroundTruth. As a ground truth of matching entity descriptions for D2-D5, we

consider the owl:sameAs links to/from DBpedia 3.7 (the version used in BTC12). As a

ground truth for D1, we consider the subject URIs of Infoboxes that also appear as sub-

jects in BTC12DBpedia. The ground truth of D6 is made of DBpedia movies that are

connected with IMDB movies through the imdbId property7. Based on the ground truth

and the generated blocks, we label a pair of entity descriptions according to Table 5.4.

Intuitively, we say that a known matching pair of descriptions is correctly resolved, i.e.,

a true positive (TP), if there is at least a block, to which both these descriptions belong.

Pairs of descriptions belonging to the same block are candidate matches. A false positive

(FP) is a distinct candidate match that is not contained in the ground truth. Conversely,

if a known matching pair is not a candidate match, then this pair is considered as a false

negative (FN). All other pairs of descriptions are considered to be true negatives (TN).

Similarly to D2-D5, we used the available types of links of the datasets of Table 5.2 to

BTC12- DBpedia, instead of owl:sameAs, to produce the ground truth of the corresponding

entity collections. From all datasets, except D6, we removed the triples that are present in

the ground truth, since identifying those links is the goal of our tasks.

Pre-processing. We used a pre-processing program, implemented in MapReduce

that parses RDF triples in order to transform them into entity descriptions, which are the

input of the methods used in our study. It simply groups the triples by subject, and outputs

each group as an entity description, using the subject as the entity identifier. We kept only

the entity descriptions for which we know their linked description in BTC12DBpedia and

removed the rest. This way, we know that any suggested comparison between a pair of

descriptions outside the ground truth is false. Moreover, we removed triples containing a

blank node8. Last but not least, we applied tokenization, lowercasing and removed non-

English literals (when such information was explicitly provided by a language tag), as a

7l3s.de/ papadakis/erFramework.html
8Anonymous or blank nodes, that play the role of existential variables, appearing in subjects and objects, should
be avoided when datasets are published according to the Linked Data paradigm.

80 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

typical standardization step of the literal values (e.g., similar to [Isele and Bizer, 2012,

2013]).

5.2 MEASURES

The employed quality measures along with a short description are summarized in Table 5.5.

The ideal value of each measure is in boldface. Recall shows how many of the matching

descriptions, the blocking method manages to place together into at least one common

block. The recall of a blocking technique is the upper recall threshold of a non-iterative

entity resolution algorithm, which takes its generated blocks as input. Therefore, recall

represents the effectiveness of blocking. Seen differently, (1-recall) represents the cost of

blocking. Precision shows how many of the suggested comparisons will be redundant, i.e.,

between non-matches. Reduction ratio, RR, is the percentage of comparisons that we save

if we apply the given blocking method. Consequently, it reflects the benefit of blocking, since

the reason for using blocking in the first place, is the reduction in the required comparisons.

In general, a good blocking method should have a low impact on recall, i.e., a low

cost, and at the same time, a great impact on the number of required comparisons, i.e., a

high benefit. Typically, this trade-off is measured by the F-measure, namely, the harmonic

mean of recall and precision. However, as we will see in the next section, the values of

F-measure are dominated by the values of precision, which are many orders of magnitude

lower than those of recall, so the F-measure cannot be easily used to express this trade-off.

Instead, we introduce H3R as the harmonic mean of recall and reduction ratio. Similar to

the F-measure, H3R gives high values only when both recall and reduction ratio have high

values. Unlike F-measure, H3R manages to capture the trade-off between effectiveness and

efficiency in a more balanced way. In case emphasis is put on recall, i.e., minimizing the

cost of blocking, we can also use a weighted mean, H3Rw, which considers recall to be w

times more important than reduction ratio. In our experiments, for instance, we have also

included the scores for H3R2. Whether more emphasis should be put on recall or reduction

ratio, depends on the dataset characteristics. On a homogeneous entity collection, where

a high recall is not difficult to achieve, more weight can be given to reduction ratio. On

the other hand, on a heterogeneous collection, like many of the ones met in the Web of

data, getting as many matches as possible is usually the first priority, making recall more

important than reduction ratio. As a final notice, observe that H3R does not estimate the

performance of a blocking approach (as, for example, [Papadakis et al., 2012] does), but

evaluates it based on the actual results.

5.3 QUALITY RESULTS

5.3. QUALITY RESULTS 81

Table 5.5: Quality measures (the ideal value of each measure is in boldface).

Name Formula Range Description

Recall TP
TP+FN [0,1]

Measure what fraction of the known
matches are candidate matches.

Precision TP
TP+FP [0,1]

Measure what fraction of the candi-
date matches are known matches.

F-measure 2 Precision·Recall
Precision+Recall [0,1]

The harmonic mean of precision and
recall.

RR 1− comparisons with blocking
comparisons without blocking [0,1]

Returns the ratio of reduced compar-
isons when blocking is applied.

H3R 2 RR·Recall
RR+Recall [0,1]

The harmonic mean of recall and re-
duction ratio.

H3Rw (1 + w2) RR·Recall
(w2·RR)+Recall [0,1]

The weighted harmonic mean of recall
and reduction ratio, with recall having
w times the weight of reduction ratio.

5.3.1 IDENTIFIED MATCHES (TPS)

Token blocking: The basic premise of this algorithm is that matching entity descriptions

should at least share a common token, disregarding the comparisons between descriptions

that do not share any common tokens. Therefore, the higher the number of common tokens,

i.e., tokens shared by the datasets composing an entity collection, a description has, the

higher the chances it will be placed in a block with a matching description, increasing

recall. Figure 5.1 (top) presents the distributions of common tokens per entity description,

showing that descriptions in central collections feature many more common tokens than

those in peripheral collections9. For example, 41.43% and 44% of descriptions in D1 and

D3, respectively, have 2 - 4 common tokens, while for D2, D4 and D5 the corresponding

values are 33.26%, 26.03% and 12.97%, respectively. We observe a big difference in the

distribution of D6, which contains many more common tokens per description, to those of

the other collections, due to the fact that the ratio of matches to non-matches is much higher

than in the other collections (Table 5.3). Only 23.75% of the descriptions in this collection

have 0 - 10 common tokens. This figure also shows that a big number of descriptions in

peripheral collections do not share any common tokens. Those are hints that the recall of

token blocking in central collections is higher than in peripheral collections.

Indeed, D6 is the dataset with the highest recall (99.92%) and the highest number of

common tokens per entity (19), while D5 is the dataset with the lowest recall (72.13%) and

number of common tokens per entity (0). There is a big difference in the number of common

tokens in D6, compared to D1 and D3, which is not reflected by their small difference in

recall. Due to the high ratio of matches to non-matches in D6 (Table 5.3), descriptions in

this collection have many common tokens and this leads to high recall.

9We take the median values and not the averages, as the latter are highly influenced by extreme values and our
distributions are skewed.

82 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

Attribute clustering blocking: The goal of attribute clustering blocking is to improve

the precision of token blocking, while retaining its recall as much as possible (it cannot have

higher recall). To do this, it restricts the number of attributes on which entity descriptions,

featuring a common token, should be compared. Comparisons between descriptions that

do not share a common token in a common attribute cluster are thus discarded. Hence,

descriptions with many common tokens in common clusters are more likely to be matched.

Figure 5.1 (bottom) presents the distributions of the number of common tokens in common

attribute clusters per entity description. It shows a clearer distinction between central and

peripheral collections than Figure 5.1 (top); the descriptions in central collections have

many more common tokens in common clusters, while many descriptions in peripheral

collections do not have any common token in a common cluster. This occurs, because

values in the descriptions of peripheral collections are much less similar than those of

central collections, leading to a bad clustering of the attributes and, consequently, to lower

recall. In fact, D6 is the dataset with the highest recall (99.55%) and the highest number of

common tokens in common attribute clusters per description (19). On the other hand, D2

and D5, which have the lowest recall values (68.42% and 71.11%, respectively) also have

the lowest number of common token in common attribute clusters per description (0).

In central collections (D1, D3, D6), many, small clusters of similar attributes are

formed, as the values of the descriptions are also similar. This leads to a minor decrease

in recall, compared to token blocking, while it significantly improves its precision (even

by an order of magnitude in D3). D1 forms many (16,886), small attribute clusters (of 2

attributes in the median case), since in most cases there is a one-to-one mapping between

the attributes of the datasets that compose it. These clusters correspond to the mapping

of the same attribute used by the two versions of DBpedia that compose this collection.

However, this approach has a substantial impact on recall in peripheral collections

(D2, D4, D5), even if it still improves precision in all collections (even by an order of

magnitude for D4). The descriptions in those collections have only few common tokens in

the first place, which leads to a bad clustering of attributes; few clusters of many attributes,

not similar to each other, are formed. Hence, if we make the blocking criterion of token

blocking stricter, by also considering attributes, then the more distinct attributes used per

entity type, the more difficult it is for an entity description, to be placed in a common block

with a matching description. For BTC12Rest (part of D2), the ratio between attributes

and entity types (last row of Table 5.1) is the highest (15.7), leading to a great impact

on recall (-24.04%). This dataset has the biggest number of data sources that compose it

and many different attribute names can be used for the same purpose; hence, big attribute

clusters are formed. LOCAH (part of D5) only has 3.5 attributes per entity type. Thus,

the recall of attribute clustering blocking is insignificantly reduced (-1.02%), compared to

that of token blocking.

5.3. QUALITY RESULTS 83

Prefix-Infix(-Suffix) blocking: Prefix-Infix(-Suffix) blocking is built on the premise that

many URIs contain useful information. Its goal is to extend token blocking and improve

both its recall, by also considering the subject URIs of the descriptions, and its precision,

by disregarding some unneeded tokens in the URI values (either in the prefix or suffix).

It achieves good recall values in datasets with similar naming policies in the URIs, as in

D4, part of which is BBCmusic, which also has Wikipedia as a source. However, it misses

many matching pairs of descriptions, when the names of the URIs do not contain useful

information, as in D3 that uses random strings as ids, or have different policies, as in

D5, which uses concatenations of tokens, without delimiters, as URIs. The recall of D1 is

100%, because the collection is constructed this way; it consists of two versions of the same

dataset, DBpedia, and the URIs appearing as subjects in Infoboxes are only those URIs

that also appear as subjects in BTC12DBpedia. PIS is not applicable (marked as N/A) to

D6, since its URIs have been replaced with numerical identifiers in the provided datasets10.

5.3.2 MISSED MATCHES (FNS)

A non-negligible number of matching pairs of descriptions do not share any common tokens

at all. Such descriptions, constituting the false negatives of token blocking, should not be

assumed faulty, or noisy. We distinguish two different sources of information that can be

exploited for successfully placing descriptions of missed matches in common blocks:

i. The matches of their neighbors: Given that an entity description can have, as one of its

values, another description, neighborhoods of related descriptions are formed, spinning

the Web of data. The knowledge of matches in the neighborhood of a description is

valuable for correctly matching this description. For example, if the description e10 is

related to e1, e20 is related to e2 and we know that e10 and e20 match, then we can

use this knowledge as a hint that e1 and e2 could possibly match, too.

ii. A third, matching description: In dirty collections (typically peripheral), which are

composed of datasets that potentially contain duplicate descriptions, a description e1

could have more than one matching description, e.g., both e2 and e3. Identifying one

of these matches, e.g., (e1, e3), knowing that (e2, e3) is a match, leads to also identify

the missing match (e1, e2).

Table 5.7 provides details about the number (first row of Table 5.7) and the characteristics

of false negative pairs of descriptions, as well as for the set of individual descriptions that

constitute these pairs11.

We focus first on the neighbors of these descriptions, namely descriptions that appear

in their values. We found that almost all the descriptions in the false negatives have at

least one neighbor (second row of Table 5.7). Looking more thoroughly, we counted the

10We want to keep this dataset unchanged, as its only purpose is to verify the correctness of our results.
11We have excluded D6 from this analysis, as it does not contain any descriptions with neighbors.

84 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

Table 5.6: Statistics and evaluation of blocking methods.

D1 D2 D3 D4 D5 D6

Token blocking statistics:

blocks 1,639,962 122,340 1,019,501 57,085 2,109 40,304

comparisons (clean-clean) 1.68 · 1012 3.74 · 1010 6.56 · 1011 2.39 · 1010 8.72 · 108 2.91 · 108

RR (clean) 88.51% 86.81% 96.03% 89.48% 92.09% 54.50%

comparisons (dirty) 5.56 · 1012 3.68 · 1012 4.27 · 1012 4.02 · 1012 1.01 · 1012 2.05 · 109

RR (dirty) 90.08% 90.87% 92.67% 90.01% 97.48% −58.85%

common tokens per entity 4 3 4 2 0 19

Attribute clustering blocking statistics:

blocks 5,602,644 150,293 1,673,855 39,587 3,724 43,716

comparisons 3.22 · 1011 4.20 · 109 1.84 · 1011 1.43 · 109 7.13 · 108 2.13 · 108

RR 97.80% 98.52% 98.89% 99.37% 93.54% 66.80%

common tokens in common attribute
clusters per entity

4 0 4 2 0 19

attribute clusters 16,886 124 2,106 6 8 4

attributes per attribute cluster 2 142 9 4,261 3,946 3

Prefix-Infix(-Suffix) blocking statistics:

blocks 3,266,798 141,517 789,723 45,403 2,098 N/A

comparisons (clean-clean) 1.10 · 1012 1.78 · 1010 2.75 · 1011 2.30 · 109 4.08 · 108 N/A

RR (clean) 92.48% 93.72% 98.34% 98.99% 96.30% N/A

comparisons (dirty) 4.39 · 1012 3.45 · 1012 5.34 · 1012 3.32 · 1012 1.76 · 1012 N/A

RR (dirty) 92.16% 91.44% 90.84% 91.76% 95.59% N/A

Recall:

Token blocking (clean-clean) 98.38% 92.46% 95.52% 87.76% 72.13% 99.92%

Token blocking (dirty) 98.38% 89.99% 94.85% 87.95% 77.34% 99.92%

Attribute clustering blocking 97.31% 68.42% 92.10% 76.84% 71.11% 99.55%

Prefix-Infix(-Suffix) blocking (clean-
clean)

100% 91.71% 87.68% 95.44% 68.17% N/A

Prefix-Infix(-Suffix) blocking (dirty) 100% 89.25% 87.06% 95.50% 74.12% N/A

Precision:

Token blocking (clean-clean) 1.56 · 10−6 1.00 · 10−6 2.49 · 10−6 1.30 · 10−6 1.13 · 10−6 1.21 · 10−4

Token blocking (dirty) 3.64 · 10−7 5.14 · 10−9 3.78 · 10−7 1.05 · 10−8 1.29 · 10−9 7.51 · 10−5

Attribute clustering blocking 8.51 · 10−6 5.76 · 10−6 1.01 · 10−5 1.41 · 10−5 1.35 · 10−6 1.52 · 10−4

Prefix-Infix(-Suffix) blocking (clean-
clean) 1.87 · 10−6 2.19 · 10−6 5.72 · 10−6 1.01 · 10−5 2.05 · 10−6 N/A

Prefix-Infix(-Suffix) blocking (dirty) 6.04 · 10−7 8.21 · 10−9 2.77 · 10−7 1.23 · 10−8 6.99 · 10−10 N/A

F-measure:

Token blocking (clean-clean) 3.13 · 10−6 2.00 · 10−6 9.72 · 10−7 2.06 · 10−8 1.94 · 10−9 2.42 · 10−4

Token blocking (dirty) 7.28 · 10−7 1.03 · 10−8 7.55 · 10−7 2.10 · 10−8 2.59 · 10−9 1.50 · 10−4

Attribute clustering blocking 1.70 · 10−5 1.15 · 10−5 2.02 · 10−5 2.82 · 10−5 2.69 · 10−6 3.04 · 10−4

Prefix-Infix(-Suffix) blocking (clean-
clean) 3.75 · 10−6 4.38 · 10−6 9.98 · 10−7 2.02 · 10−5 4.11 · 10−6 N/A

Prefix-Infix(-Suffix) blocking (dirty) 1.21 · 10−6 1.64 · 10−8 5.55 · 10−7 2.46 · 10−8 1.40 · 10−9 N/A

H3R:

Token blocking (clean-clean) 93.18% 89.55% 95.77% 88.61% 80.90% 70.53%

Token blocking (dirty) 94.05% 90.43% 93.75% 88.97% 86.25% N/A (RR < 0)

Attribute clustering blocking 97.55% 80.76% 95.37% 86.66% 80.80% 79.95%

Prefix-Infix(-Suffix) blocking (clean-
clean)

96.09% 92.70% 92.70% 97.18% 79.83% N/A

Prefix-Infix(-Suffix) blocking (dirty) 95.92% 90.33% 88.91% 93.59% 83.50% N/A

H3R2:

Token blocking (clean-clean) 96.23% 91.27% 95.62% 88.10% 75.40% 85.64%

Token blocking (dirty) 96.60% 90.16% 94.40% 88.35% 80.67% N/A (RR < 0)

Attribute clustering blocking 97.41% 72.87% 93.38% 80.49% 74.69% 90.66%

Prefix-Infix(-Suffix) blocking (clean-
clean)

98.40% 92.11% 89.62% 96.13% 72.40% N/A

Prefix-Infix(-Suffix) blocking (dirty) 98.33% 89.68% 87.79% 94.73% 77.61% N/A

5.3. QUALITY RESULTS 85

Figure 5.1: Common tokens (top) and common tokens in common clusters (bottom) per entity

description distributions for D1-D6.

percentage of descriptions in false negatives that have at least one neighbor belonging to

the ground truth (third row of Table 5.7). In all cases, this percentage is more than 10%

and goes up to 58% for D4. This means that, not only do these descriptions have neighbors,

but many of these neighbors can be matched to other descriptions in the same collection as

well. Then, we counted the percentage of descriptions in false negatives that have neighbors,

which have already been matched to another description (fourth row of Table 5.7). This

percentage is over 20% in most collections, while it reaches up to 51.84% for D4. Finally,

we counted the percentage of false negative pairs, whose descriptions have neighbors, which

match to each other (fifth row of Table 5.7). This percentage is 0 for D1, since matches

in this collection are defined as descriptions that have the same subject URI. However,

in some peripheral collections (D2, D4), examining the matches of the neighbors of the

86 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

descriptions is meaningful. Moreover, in these collections it seems that some specific types

of neighbors, e.g., persons and locations, are more likely to be matching than others, e.g.,

activities. For example, the most frequent predicates that link a match to a pair of matching

neighbors in D2 are hasProducer, hasDirector, starring, country and in D4 such predicates

are bandMember, associatedBand, artist, spouseOf, siblingOf.

Another useful piece of information for the missed matches of dirty collections is

whether their descriptions have been correctly matched to a third description. The last

row of Table 5.7 quantifies this statistic, showing that there are collections, both peripheral

(D2, D5) and central (D3), for which this kind of information could, indeed, be useful.

Table 5.7: Characteristics of the missed matches (false negatives) of token blocking.

D1 D2 D3 D4 D5

FNs 25,419 3,176 87,672 2,886 303
descriptions in FNs, with neighbor(s) 99.64% 100% 99.99% 100% 100%
descriptions in FNs, with neighbor(s) in ground truth 22.60% 53.94% 36.43% 58.36% 11.57%
descriptions in FNs, with neighbor(s) with an identified match 20.94% 48.54% 34.05% 51.84% 7.59%
FNs with matching neighbors 0% 24.81% 0.38% 37.63% 0%
FNs with common, identified matches 0% 25.35% 10.54% 0.14% 8.58%

5.3.3 NON-MATCHES (FPS AND TNS)

Next, we examine the ability of blocking methods to identify non-matches, namely their

ability to avoid placing non-matching descriptions in the same block. A key statistic for

this, regarding the datasets, is the ratio of matches to non-matches, as shown in Table 5.3.

The higher the ratio, the easier it is for a blocking method to have better precision, as it

statistically has better chances of suggesting a correct comparison. D6 is the collection with

the highest such ratio and the highest precision, while D5 has the lowest ratio and, in most

blocking methods, the lowest precision scores, too. It is clear from Table 5.6 that attribute

clustering blocking is the most precise method, since, in almost every case, it results in

the fewest wrong suggestions. On the contrary, the worst method in terms of precision is

token blocking, in all cases. The differences in precision, in some cases even by an order

of magnitude, also determine F-measure, since the differences in recall values are not that

big. Note that all the evaluated methods have very low precision, meaning that the vast

majority of suggested comparisons correspond to non-matches.

5.4 PERFORMANCE RESULTS

For the benefits of blocking in terms of performance, we examine the number of comparisons

that result from the generated blocks and how different this number is to the number of

comparisons that we would perform without blocking. Central and peripheral collections do

not present different behaviour in terms of performance. We consider our H3R and H3R2

5.5. DIFFERENT TYPES OF LINKS 87

measures to be best for an overall evaluation of blocking, since they capture both quality

and performance.

Table 5.6 shows that all the evaluated methods manage to greatly reduce the number

of comparisons that would be required if blocking was not applied, by one (D1-D4) or even

two (D5) orders of magnitude. This is reflected by the high RR scores in all cases. An ex-

ception seems to be D6, which is much smaller in terms of descriptions and, consequently,

comparisons without blocking. Moreover, its descriptions contain many more common to-

kens than the other collections, leading to more comparisons per entity description. In this

case, token blocking does not save many of the comparisons that would be required without

blocking and, in the case of seeing D6 as a dirty dataset, it even produces twice as many

comparisons.

With respect to H3R and H3R2, we notice that, in general, central collections have

higher scores, i.e., they present a better balance between recall and reduction ratio. This

means that in central collections, the comparisons that are discarded by blocking mostly

correspond to non-matches, while many of the comparisons that are discarded by blocking

in peripheral collections correspond to matches. Again, D6 has a different behaviour, since

it initially contains a much smaller number of comparisons and a high ratio of matches to

non-matches, so the reduction ratio for this collection is limited. Also, these measures are

not applicable to token blocking, when applied to D6 dirty, since in that case the reduction

ratio is negative.

5.5 DIFFERENT TYPES OF LINKS

In order to evaluate the ability of blocking methods to identify more types of links, semanti-

cally close or even not that close to equivalence links, we have run a set of experiments with

the peripheral collections consisting of each of the datasets of Table 5.2 and BTC12DBpedia.

Table 5.8 provides the recall of token blocking, when applied to each of those collections.

Similarly to the owl:sameAs links, token blocking performs well for links with the seman-

tics of equivalence, as in the airports and airlines datasets with recall values close to 100%.

It also manages to identify many subject associations, as in the cases of books and iati

datasets. It performs poorly in identifying this kind of association, however, in the twitter

dataset, where its recall values fall to below 10%. This could be justified by the nature of

this dataset, which, in most cases, simply states who is the creator of some slides. Regard-

ing spatial associations, token blocking manages to identify a mere 39% of the coverage

associations of the iati dataset, but it performs much better in identifying the based near

associations of www2012, with a recall of 63%. The spatial relationships of coverage are

looser than those of based near, hence the related descriptions are not so strongly related

in the former type of links. For example, in iati, the description of a project regarding the

evaluation of cereal crop residues is linked to the DBpedia resource describing Latin Amer-

88 5. EXPERIMENTAL EVALUATION OF BLOCKING ALGORITHMS

Table 5.8: Recall of token blocking for the collections composed of datasets of Table 5.2 and

BTC12DBpedia.

a
ir
p
o
r
t
s

a
ir
li
n
e
s

tw
it
t
e
r

b
o
o
k
s

ia
t
i

w
w
w
2
0
1
2

link umbel:isLike umbel:isLike dct:subject dct:subject dct:subject dct:coverage foaf:based near
Recall 97.47% 99.75% 9.52% 63.55% 49.13% 39.46% 62.61%

ica and the Caribbean, through the coverage relation, while, in www2012, a Greek professor

is linked to the DBpedia resource describing Greece, through the based near relation.

5.6 LESSONS LEARNED

We conclude this chapter with the key points of our evaluation. In general, central entity

collections are mostly derived from a common source, Wikipedia, from which they extract

information regarding an entity. This way, the descriptions in such collections follow similar

naming policies and feature many common tokens (Figure 5.1) in the values of semantically

similar, or even equivalent attributes (see the small size of attribute clusters in Table 5.6).

Those are exactly the premises on which the evaluated blocking methods are built.

For these reasons, the recall achieved by token blocking in central entity collections

is very high (ranging from 94.85% to 99.92%). With the exception of D6 (featuring a

higher ratio of matching to non-matching descriptions), the precision achieved by token

blocking in these collections ranges from 3.64 · 10−7 to 2.49 · 10−6. The gains in precision

brought by attribute clustering blocking in central entity collections are up to one order of

magnitude (for D3), with a minor cost on recall (from 0.37% to 3.42%). Prefix-infix(-suffix)

blocking can improve both recall and precision of token blocking for central collections,

as in D1, but, it can also deteriorate these values, as in the dirty case of D3, which uses

random identifiers as URIs, in which recall drops by 7.79% and precision by 26.72%. In a

nutshell, many redundant comparisons are suggested by blocking algorithms in all entity

collections (see precision and F-measure in Table 5.6), due to the small ratio of matches to

non-matches in the collections (Table 5.3). However, as the H3R reveals, the comparisons

that are discarded by blocking in central collections mostly correspond to non-matches.

On the other hand, entity descriptions in peripheral datasets are far more thematically

diverse, following different naming policies and sharing few common tokens (Figure 5.1),

since they stem from various sources. The lack of similar values in those descriptions also

leads to a bad clustering of attributes; big clusters, of attributes not similar to each other,

are formed (Table 5.6).

For these reasons, the recall of token blocking for peripheral entity collections drops

even to 72.13%, while precision ranges from 1.29 · 10−9 to 1.3 · 10−6. The gains in precision

brought by attribute clustering blocking (up to one order of magnitude) in peripheral

5.6. LESSONS LEARNED 89

collections, come at the cost of a drop in recall up to 24.04% (corresponding to 7,421 more

missed matches). Prefix-infix(-suffix) blocking can improve the precision of token blocking

in peripheral collections, even by an order of magnitude (for D4), or decrease it by an

order of magnitude (for D5), while it decreases recall from 0.74% to 3.96%, i.e., more

matches are missed. In the case of D4, in which both datasets use Wikipedia as one of their

sources, recall is improved by up to 7.68%. In overall, however, H3R reveals that many

of the comparisons that are discarded by blocking in peripheral collections correspond to

matches.

Nevertheless, the information that the missed matches provide, e.g., regarding the

neighborhoods of their descriptions, as well as other descriptions placed in common blocks

with them (Table 5.7), set the ground for a new generation of blocking algorithms, which,

unlike the existing ones, will take this information into account and potentially identify

those matches, possibly in an iterative fashion.

Finally, in peripheral collections, there are several types of relations, other than equiv-

alence, between the descriptions. Token blocking manages to identify some of these rela-

tions, depending on the dataset, the specific type of such links, as well as the immediacy

of those relations (Table 5.8). It does not perform well when the data do not contain much

information (e.g., see the characteristics of the twitter dataset in Table 5.2), or when the

relationship of the entities is loose (e.g., see the recall of iati for the coverage relationship

in Table 5.8). Thus, for a quantitative evaluation of blocking methods, ground truth should

not be restricted only to owl:sameAs links. We could potentially take other relations into

account, to identify more such links, or more owl:sameAs links, using iterative algorithms.

90

C H A P T E R 6

Conclusions

Although Entity Resolution (ER) has been studied for more than three decades in different

computer science communities, it still remains an active area of research. The problem

has enjoyed a renaissance during the recent years, with the avalanche of data-intensive

descriptions of real-world entities provided on the Web by government, scientific, corporate

or even user-crafted Knowledge Bases (KBs). To foster an entity-centric organization of

Web data, it is crucial to reconcile different descriptions, within or across KBs, that refer

to the same real-world entity. In this synthesis lecture, we presented why resolving entities

at the Web scale still remains an important and open research problem.

In particular, the scale, diversity and graph structuring of entity descriptions pub-

lished according to the Linked Data paradigm challenge the core ER tasks, namely, (i) how

descriptions can be effectively compared for similarity and (ii) how resolution algorithms

can efficiently filter the candidate description pairs that need to be compared. First, ER in

the Web of data involves a large number of KBs (in the order of hundreds) and even a larger

number of entity types (in the order of thousands) whose published descriptions could be

potentially resolved. In this context, the same entity can be described in a complementary

and sometimes conflicting way using highly heterogeneous descriptive schemas. Thus, we

need to examine whether two entity descriptions are somehow (or near) similar without

resorting to domain-specific similarity functions and/or mapping rules. This clearly goes

beyond deduplication of few collections of descriptions concerning a single entity type and

requires leveraging both the content (i.e., literal values of attributes) and the graph struc-

ture (i.e., relationships with others) of descriptions. Moreover, in a nutshell, the resolution

of some entity descriptions might influence the resolution of others.

Second, since conceiving an ideal similarity function for all kinds of Web data is prac-

tically impossible, more pragmatic approaches are needed, that consider different similarity

aspects of descriptions at different ER processing steps. We are thus forced to revisit tradi-

tional ER workflows consisting of separate indexing (for pruning the number of candidate

pairs) and matching (for resolving entity descriptions) phases. As a matter of fact, exact

(as blocking) or approximate (as locality-sensitive hashing) indexing techniques, based ex-

clusively on the content of descriptions, fail to achieve a reasonable trade-off between the

amount of discarded non-matches and the amount of missed matches. This limitation be-

comes more severe when resolving entity descriptions published by KBs lying in the center

(i.e., with popular entities) and the periphery (i.e., with unpopular, “tail” entities) of the

Linked Open Data cloud. Even if it entails an additional processing cost, an iterative entity

91

resolution process seems more promising for minimizing the number of missed matches,

while exploring any available intermediate results of blocking and matching in order to

discover new candidate description pairs for resolution in an iterative manner.

Moreover, the ER problem has been historically framed as a batch, centralized com-

putation aiming to improve data quality in a data warehouse. However, Web applications

providing entity-centric search and recommendations, strive for new ER execution strate-

gies to resolve, under specific efficiency or effectiveness constraints, very large collections

of entity descriptions, eventually arriving in streams. On the one hand, various well-known

algorithms have benefited from parallel and distributed implementations aiming to reduce

the overall execution time of the entire ER process. On the other hand, the recently pro-

posed progressive ER algorithms interleave the decisions about potential candidate pairs

of descriptions for comparisons with partial entity resolution results. Progressive ER aims

to identify many similar pairs as early in the detection process as possible and thus have

the potential to deliver more complete results in shorter amounts of time compared to a

traditional ER execution approach. Still, this new wave of progressive ER is not suited for

resolving descriptions that refer to multiple entity types and are graph structured.

Finally, three active research topics that are not covered in this lecture due to space

restrictions are probabilistic, privacy-preserving and crowdsourced-based ER.

• Probabilistic ER. The ER approaches presented so far, take as input certain en-

tity descriptions and produce certain matching results. A recent line of research is to

consider some confidence scores, i.e., work with uncertain data. For example, [Ioan-

nou et al., 2008] assigns a probability to each matching decision, depending on the

evidence supporting this decision. Such evidence can be obtained, for instance, by a

similarity function. More recently, [Dong et al., 2014a] associates confidence scores

with the facts of KBs, representing the belief the fact is correct, based on supervised

machine learning methods. Data uncertainty introduces additional challenges to the

ER problem, since incommodes the similarities computation and, therefore, the reso-

lution process between entity descriptions; for a review on uncertain entity resolution,

readers are referred to [Gal, 2014].

• Privacy aspects of ER. The process of ER may raise concerns regarding the

privacy protection of individuals, whose descriptions are resolved. Two major issues

with respect to privacy, when personal information is matched across organizations,

arise: (i) typical ER systems require all data to be available (not only those that

are eventually resolved), and (ii) ER results, using entity descriptions from different

organizations, can reveal sensitive information that is not available to a single or-

ganization [Christen, 2012]. [Whang and Garcia-Molina, 2013] proposes the practice

of disinformation, i.e., deliberately injecting false information into the descriptions,

in order to protect the privacy of individuals from potential threats posed by ER

systems. By adding false information to a description, it becomes less similar to de-

92 6. CONCLUSIONS

scriptions with which it should match and hence, it is more difficult for an ER system

to identify those descriptions as matching. Seen differently, disinformation techniques

can be used to evaluate the robustness of an ER system. For a complete survey of

privacy-preserving ER, we refer to [Christen, 2012].

• Crowdsourced-based ER. In general, crowdsourcing is a costly procedure that

can effectively generate a ground truth that will be used either as a training set for a

learning-based ER algorithm to identify matches, or to evaluate the results of an ER

approach. [Whang et al., 2013a] tries to reduce the cost of crowdsourcing, by min-

imizing the number of questions that are posed to humans, selecting each time the

question with the highest expected accuracy. [Demartini et al., 2013] develops Zen-

Crowd that uses a semi-automatical ER framework, in which decisions not associated

with a high confidence score are propagated to humans. ZenCrowd is also able to

identify, and thus ignore, unreliable human decisions. On the opposite side, in [Wang

et al., 2012], descriptions are initially resolved by machines and then people only ver-

ify the most certain matches, while [Vesdapunt et al., 2014] exploits the transitivity

of the equivalence relation to infer as many matches as possible, based on the ER

answers that were verified by humans. Existing crowdsourced-based ER approaches

are challenged by the size of the datasets in the Web of data [Gokhale et al., 2014].

93

Acknowledgments

Several people provided valuable support during the preparation of this book, without

whose help the project could not have been satisfactorily and timely completed. We warmly

thank Ying Ding and Paul Groth for inviting us to write this book and Michael Morgan for

managing the entire publication process. Special thanks also go to Christian Bizer for con-

structive feedback during the review process of the book. We would also like to acknowledge

our many collaborators who have influenced our thoughts and our understanding of this

research area over the years, and the following projects for their support in our research

efforts: EU FP7-ICT-2011-9 DIACHRON (Managing the Evolution and Preservation of the

Data Web), EU FP7-PEOPLE-2013-IRSES SemData (Semantic Data Management), EU

FP7-ICT-318552 IdeaGarden (An Interactive Learning Environment Fostering Creativity)

and LoDGoV (Generate, Manage, Preserve, Share and Protect Resources in the Web of

Data) of the Research Programme ARISTEIA (EXCELLENCE), GSRT, Ministry of Ed-

ucation, Greece, and the European Regional Development Fund. Finally, we would like to

thank the ∼okeanos GRNET cloud service that is used in our experimental evaluation.

94

Bibliography

S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web Data Man-

agement. Cambridge University Press, New York, NY, USA, 2011. ISBN 1107012430,

9781107012431. 2

L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks, 25(3):

211–230, 2003. 32

A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information

integration. In WIRI, pages 30–39, 2005. 44, 57

Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational entity

resolution. PVLDB, 7(11):999–1010, 2014. 70

R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data

warehouses. In VLDB, pages 586–597, 2002. 31, 65

A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In VLDB, pages

918–929, 2006. 50

S. Araújo, D. Tran, A. DeVries, J. Hidders, and D. Schwabe. SERIMI: class-based disam-

biguation for effective instance matching over heterogeneous web data. In WebDB, pages

25–30, 2012. 26

S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. Dbpedia: A

nucleus for a web of open data. In ISWC, pages 722–735, 2007. 6

S. Auer, J. Lehmann, and S. Hellmann. Linkedgeodata: Adding a spatial dimension to the

web of data. In A. Bernstein, D. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta,

and K. Thirunarayan, editors, ISWC, volume 5823 of Lecture Notes in Computer Science,

pages 731–746. Springer Berlin Heidelberg, 2009. 13

N. Augsten and M. H. Böhlen. Similarity Joins in Relational Database Systems. Syn-

thesis Lectures on Data Management. Morgan & Claypool Publishers, 2013. ISBN

9781627050289. 29, 50

B. Bahmani, A. Goel, and R. Shinde. Efficient distributed locality sensitive hashing. In

CIKM, pages 2174–2178, 2012. 41

95

S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee, J. Madhavan, A. Rostamizadeh, W. Shen,

K. Wilder, F. Wu, and C. Yu. Applying webtables in practice. In CIDR 2015, Seventh

Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January

4-7, 2015, Online Proceedings, 2015. 9

K. Balog, M. Bron, and M. de Rijke. Category-based query modeling for entity search. In

ECIR, pages 319–331, 2010a. 5, 8, 17

K. Balog, E. Meij, and M. de Rijke. Entity search: Building bridges between two worlds.

In SEMSEARCH, pages 9:1–9:5, 2010b. 5, 8, 17

R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW,

pages 131–140, 2007. 49, 50

Z. Bellahsene, A. Bonifati, and E. Rahm, editors. Schema Matching and Mapping. Data-

Centric Systems and Applications. Springer, 2011. ISBN 978-3-642-16517-7. doi: 10.

1007/978-3-642-16518-4. URL http://dx.doi.org/10.1007/978-3-642-16518-4. 21

K. Bellare, C. Curino, A. Machanavajihala, P. Mika, M. Rahurkar, and A. Sane. WOO: A

scalable and multi-tenant platform for continuous knowledge base synthesis. PVLDB, 6

(11):1114–1125, 2013. 71

O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai, T. E. Larson, D. Menestrina, and

S. Thavisomboon. D-swoosh: A family of algorithms for generic, distributed entity reso-

lution. In ICDCS, page 37, 2007. 62

O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom.

Swoosh: a generic approach to entity resolution. VLDB J., 18(1):255–276, 2009. 21, 62,

73

L. Bertossi. Database Repairing and Consistent Query Answering. Morgan & Claypool

Publishers, 2011. ISBN 1608457621, 9781608457625. 7

I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution.

In SDM, 2006. 21

I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. IEEE Trans.

Knowl. Data Eng., 1(1), 2007. 32, 65

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similar-

ity measures. In Proceedings of the Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Washington, DC, USA, August 24 - 27, 2003,

pages 39–48, 2003. 23

C. Bizer. Search joins with the web. In ICDT, page 3, 2014. 8

http://dx.doi.org/10.1007/978-3-642-16518-4

96 6. CONCLUSIONS

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.

Dbpedia - A crystallization point for the web of data. J. Web Sem., 7(3):154–165, 2009.

17

R. Blanco, P. Mika, and S. Vigna. Effective and efficient entity search in RDF data. In

ISWC, pages 83–97, 2011. 5, 9, 17

R. Blanco, B. B. Cambazoglu, P. Mika, and N. Torzec. Entity recommendations in web

search. In ISWC, pages 33–48, 2013. 5, 17

C. Böhm, G. de Melo, F. Naumann, and G. Weikum. LINDA: distributed web-of-data-scale

entity matching. In CIKM, pages 2104–2108, 2012. 21, 26, 27, 32, 67

K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively

created graph database for structuring human knowledge. In SIGMOD, pages 1247–1250,

2008. 6

A. Bordes and E. Gabrilovich. Constructing and mining web-scale knowledge graphs. In

SIGKDD, page 1967, 2014. 8

P. Bouquet, H. Stoermer, and D. Giacomuzzi. OKKAM: enabling a web of entities. In

WWW, 2007. 7, 16

A. Z. Broder. On the resemblance and containment of documents. In Proceedings of the

Compression and Complexity of Sequences, pages 21–29. IEEE Computer Society, 1997.

36

A. Z. Broder. Identifying and filtering near-duplicate documents. In COM, pages 1–10,

2000. 7, 20

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. In ACM Symposium on the Theory of Computing, pages 327–336, 1998.

36

M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring

the power of tables on the web. PVLDB, 1(1):538–549, 2008. 8, 30

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell. Toward

an architecture for never-ending language learning. In AAAI, 2010. 6

M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC,

pages 380–388, 2002. 30

S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy duplicates. In

ICDE, pages 865–876, 2005. 21

97

S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in data

cleaning. In ICDE, page 5, 2006. 49

S. Chen, B. Ma, and K. Zhang. On the similarity metric and the distance metric. Theor.

Comput. Sci., 410(24-25):2365–2376, 2009. 26

G. Cheng and Y. Qu. Relatedness between vocabularies on the web of data: A taxonomy

and an empirical study. J. Web Sem., 20:1–17, 2013. 4

P. Christen. Febrl -: an open source data cleaning, deduplication and record linkage system

with a graphical user interface. In SIGKDD, pages 1065–1068, 2008. 23

P. Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity Resolu-

tion, and Duplicate Detection. Data-Centric Systems and Applications. Springer, 2012.

ISBN 978-3-642-31163-5. 2, 7, 16, 91, 92

V. Christophides. Resource description framework (rdf) schema (rdfs). In L. LIU and

M. ZSU, editors, Encyclopedia of Database Systems, pages 2425–2428. Springer US, 2009.

ISBN 978-0-387-35544-3. 5

K. L. Clarkson. Nearest-neighbor searching and metric space dimensions. Nearest-neighbor

methods for learning and vision: theory and practice, pages 15–59, 2006. 30

N. Dalvi, R. Kumar, B. Pang, R. Ramakrishnan, A. Tomkins, P. Bohannon, S. Keerthi,

and S. Merugu. A web of concepts. In PODS, pages 1–12, 2009. 7, 16

N. N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of structured data on the web.

PVLDB, 5(7):680–691, 2012. 7, 9, 10, 14, 15, 16

G. de Melo. Not quite the same: Identity constraints for the web of linked data. In AAAI,

2013. 22, 23, 26

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com-

mun. ACM, 51(1):107–113, 2008. 44

G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Large-scale linked data integration

using probabilistic reasoning and crowdsourcing. VLDB J., 22(5):665–687, 2013. 92

O. Deshpande, D. S. Lamba, M. Tourn, S. Das, S. Subramaniam, A. Rajaraman, V. Hari-

narayan, and A. Doan. Building, maintaining, and using knowledge bases: a report from

the trenches. In SIGMOD, pages 1209–1220, 2013. 7

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using

clustering. Machine Learning, 42(1/2):143–175, 2001. 29

98 6. CONCLUSIONS

A. Doan, J. F. Naughton, R. Ramakrishnan, A. Baid, X. Chai, F. Chen, T. Chen, E. Chu,

P. DeRose, B. Gao, C. Gokhale, J. Huang, W. Shen, and B.-Q. Vuong. Information

extraction challenges in managing unstructured data. SIGMOD Rec., 37(4):14–20, 2009.

6, 9

A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,

2012. ISBN 978-0-12-416044-6. 2, 21

G. Dong. Cross domain similarity mining: research issues and potential applications in-

cluding supporting research by analogy. SIGKDD Explorations, 14(1):43–47, 2012. doi:

10.1145/2408736.2408744. URL http://doi.acm.org/10.1145/2408736.2408744. 40

X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex information

spaces. In SIGMOD, pages 85–96, 2005. 21, 68, 70

X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun,

and W. Zhang. Knowledge vault: a web-scale approach to probabilistic knowledge fusion.

In SIGKDD, pages 601–610, 2014a. 6, 7, 91

X. L. Dong and F. Naumann. Data fusion - resolving data conflicts for integration. PVLDB,

2(2):1654–1655, 2009. 10, 21

X. L. Dong and D. Srivastava. Big Data Integration. Synthesis Lectures on Data Manage-

ment. Morgan & Claypool Publishers, 2015. 2, 16, 21, 44, 71

X. L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang. From

data fusion to knowledge fusion. PVLDB, 7(10):881–892, 2014b. 10, 21

S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and oranges: a comparison

of RDF benchmarks and real RDF datasets. In SIGMOD, pages 145–156, 2011. 15, 21

S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas, and M. J. Ward.

Instance-based matching of large ontologies using locality-sensitive hashing. In ISWC,

pages 49–64, 2012. 36

L. Egghe and C. Michel. Construction of weak and strong similarity measures for ordered

sets of documents using fuzzy set techniques. Inf. Process. Manage., 39(5):771–807, 2003.

29

O. Etzioni, M. J. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderland, D. S. Weld,

and A. Yates. Unsupervised named-entity extraction from the web: An experimental

study. Artif. Intell., 165(1):91–134, 2005. 17

J. Euzenat and P. Shvaiko. Ontology Matching, Second Edition. Springer, 2013. ISBN

978-3-642-38720-3. 28

http://doi.acm.org/10.1145/2408736.2408744

99

A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extrac-

tion. In EMNLP, pages 1535–1545, 2011. 6

L. Fang, A. D. Sarma, C. Yu, and P. Bohannon. REX: explaining relationships between

entity pairs. PVLDB, 5(3):241–252, 2011. 17

I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American

Statistical Association, 64:1183–1210, 1969. 43, 57

A. Ferrara, A. Nikolov, and F. Scharffe. Data linking. J. Web Sem., 23:1, 2013. 13

A. Gal. Tutorial: Uncertain entity resolution. PVLDB, 7(13):1711–1712, 2014. 91

L. Galarraga, G. Heitz, K. Murphy, and F. M. Suchanek. Canonicalizing open knowledge

bases. In CIKM, pages 1679–1688, 2014. 64

L. Getoor and A. Machanavajjhala. Entity resolution for big data. In SIGKDD, page 1527,

2013. 21

C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik, and X. Zhu.

Corleone: hands-off crowdsourcing for entity matching. In SIGMOD, pages 601–612,

2014. 92

G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-trees. IEEE

Trans. Knowl. Data Eng., 17(10):1347–1362, 2005. 52

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivas-

tava. Approximate string joins in a database (almost) for free. In VLDB, pages 491–500,

2001. 44, 57

R. Grishman. Information extraction: Capabilities and challenges. Technical report, NYU

CS Dept, 2012. Technical Report. 9

T. Gruber. Collective knowledge systems: Where the social web meets the semantic web.

Web Semantics: Science, Services and Agents on the World Wide Web, 6(1), 2008. ISSN

1570-8268. 3

A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental record linkage. PVLDB, 7(9):

697–708, 2014. 70, 71

C. Guéret, P. Groth, C. Stadler, and J. Lehmann. Linked data quality assessment through

network analysis. In ISWC, 2011. 13

R. V. Guha. Light at the end of the tunnel - keynote. In The Semantic Web - ISWC 2013

- 12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25,

2013, Proceedings, Part I, 2013. 9

100 6. CONCLUSIONS

K. Haas, P. Mika, P. Tarjan, and R. Blanco. Enhanced results for web search. In Proceed-

ings of the 34th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 725–734, 2011. 5, 9

O. Hassanzadeh and M. P. Consens. Linked movie data base (triplification challenge report).

In I-SEMANTICS, pages 194–196, 2008. 13

O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller, and M. Wang. A framework for

semantic link discovery over relational data. In CIKM, pages 1027–1036, 2009. 13

J. He. Large Scale Nearest Neighbor Search – Theories, Algorithms, and Applications. PhD

thesis, 2014. 7

T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Synthesis

Lectures on the Semantic Web. Morgan & Claypool Publishers, 2011. 3

M. A. Hernàndez and S. J. Stolfo. The merge/purge problem for large databases. In

SIGMOD, pages 127–138, 1995. 44, 57

M. Herschel, F. Naumann, S. Szott, and M. Taubert. Scalable iterative graph duplicate

detection. IEEE Trans. Knowl. Data Eng., 24(11):2094–2108, 2012. 61

T. Hey, S. Tansley, and K. M. Tolle. Jim gray on escience: a transformed scientific method.

In The Fourth Paradigm: Data-Intensive Scientific Discovery. 2009. 3

J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A spatially and

temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28–61, 2013. 6,

17

A. Hogan, A. Polleres, J. Umbrich, and A. Zimmermann. Some entities are more equal than

others: statistical methods to consolidate linked data. In 4th International Workshop on

New Forms of Reasoning for the Semantic Web: Scalable and Dynamic (NeFoRS2010),

2010. 26

A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and S. Decker. An empirical

survey of linked data conformance. Web Semant., 14:14–44, 2012. 14

E. H. Hovy, R. Navigli, and S. P. Ponzetto. Collaboratively built semi-structured content

and artificial intelligence: The story so far. Artif. Intell., 194:2–27, 2013. 6

E. Ioannou, C. Niederée, and W. Nejdl. Probabilistic entity linkage for heterogeneous

information spaces. In CAiSE, pages 556–570, 2008. 91

R. Isele and C. Bizer. Learning expressive linkage rules using genetic programming. PVLDB,

5(11):1638–1649, 2012. 13, 40, 80

101

R. Isele and C. Bizer. Active learning of expressive linkage rules using genetic programming.

J. Web Sem., 23:2–15, 2013. 13, 80

R. Isele, A. Jentzsch, and C. Bizer. Efficient multidimensional blocking for link discovery

without losing recall. In WebDB, 2011. 52

D. W. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric distances:

Image retrieval and class representation. IEEE Trans. Pattern Anal. Mach. Intell., 22

(6):583–600, 2000. 26

E. H. Jacox and H. Samet. Metric space similarity joins. ACM Trans. Database Syst., 33

(2), 2008. 30

B. J. Jansen and A. Spink. How are we searching the world wide web? A comparison of

nine search engine transaction logs. Inf. Process. Manage., 42(1):248–263, 2006. 17

M. A. Jaro. Advances in record-linkage methodology as applied to matching the 1985 census

of tampa, florida. Journal of the American Statistical Association, 84(406):414–420, 1989.

28

Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental evaluation.

PVLDB, 7(8):625–636, 2014. 50, 51

Y. Jin, E. Kiciman, K. Wang, and R. Loynd. Entity linking at the tail: sparse signals,

unknown entities, and phrase models. In WSDM, pages 453–462, 2014. 16, 17

D. V. Kalashnikov and S. Mehrotra. Domain-independent data cleaning via analysis of

entity-relationship graph. ACM Trans. Database Syst., 31(2):716–767, 2006. 21

B. Kenig and A. Gal. MFIBlocks: An effective blocking algorithm for entity resolution. Inf.

Syst., 38(6):908–926, 2013. 51, 57

H. Kim and D. Lee. HARRA: fast iterative hashed record linkage for large-scale data

collections. In EDBT, pages 525–536, 2010. 36, 73

I. Kitsos, K. Magoutis, and Y. Tzitzikas. Scalable entity-based summarization of web search

results using mapreduce. Distributed and Parallel Databases, 32(3):405–446, 2014. 5

L. Kolb, A. Thor, and E. Rahm. Multi-pass sorted neighborhood blocking with mapreduce.

Computer Science - R&D, 27(1):45–63, 2012a. 45, 57

L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop. PVLDB, 5

(12):1878–1881, 2012b. 45, 57

102 6. CONCLUSIONS

D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and

A. Zaveri. Test-driven evaluation of linked data quality. In WWW, pages 747–758, 2014.

6, 10

H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world

match problems. PVLDB, 3(1):484–493, 2010. 23

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.

Soviet Physics Doklady, 10:707–710, 1966. 27

T. Lin, P. Pantel, M. Gamon, A. Kannan, and A. Fuxman. Active objects: actions for

entity-centric search. In WWW, pages 589–598, 2012. 5, 9, 17

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-

jkowski. Pregel: a system for large-scale graph processing. In SIGMOD, pages 135–146,

2010. 73

P. Malhotra, P. Agarwal, and G. Shroff. Graph-parallel entity resolution using LSH &

IMM. In EDBT/ICDT Workshops, pages 41–49, 2014. 73

N. Marie and F. L. Gandon. Survey of linked data based exploration systems. In ISWC,

2014. 17

Mausam, M. Schmitz, S. Soderland, R. Bart, and O. Etzioni. Open language learning for

information extraction. In EMNLP-CoNLL, pages 523–534, 2012. 6

A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data

sets with application to reference matching. In SIGKDD, pages 169–178, 2000. 21, 65,

67

R. McCreadie, C. Macdonald, and I. Ounis. Mapreduce indexing strategies: Studying

scalability and efficiency. Inf. Process. Manage., 48(5):873–888, 2012. 52

A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce framework for all-pair

similarity joins of multisets and vectors. PVLDB, 5(8):704–715, 2012. 51

R. Meusel and H. Paulheim. Heuristics for fixing common errors in deployed schema.org

microdata. In The Semantic Web. Latest Advances and New Domains - 12th European

Semantic Web Conference, ESWC 2015, Portoroz, Slovenia, May 31 - June 4, 2015.

Proceedings, pages 152–168, 2015. 10

R. Meusel, P. Petrovski, and C. Bizer. The webdatacommons microdata, rdfa and micro-

format dataset series. In P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. Knoblock,

D. Vrandei, P. Groth, N. Noy, K. Janowicz, and C. Goble, editors, The Semantic Web

ISWC 2014, pages 277–292. 2014. ISBN 978-3-319-11963-2. 9, 10, 14

103

Z. Miklós, N. Bonvin, P. Bouquet, M. Catasta, D. Cordioli, P. Fankhauser, J. Gaugaz,

E. Ioannou, H. Koshutanski, and A. Maña. From web data to entities and back. In

CAiSE, pages 302–316, 2010. 7, 16

I. Miliaraki, K. Berberich, R. Gemulla, and S. Zoupanos. Mind the gap: large-scale frequent

sequence mining. In SIGMOD, pages 797–808, 2013. 51

I. Miliaraki, R. Blanco, and M. Lalmas. From “Selena Gomez” to “Marlon Brando”: Un-

derstanding explorative entity search. In WWW, 2015. 5, 17

Y. Mu and S. Yan. Non-metric locality-sensitive hashing. In AAAI, 2010. 26, 41

N. Nakashole, M. Theobald, and G. Weikum. Scalable knowledge harvesting with high

precision and high recall. In WSDM, pages 227–236, 2011. 6

F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Synthesis Lectures

on Data Management. Morgan & Claypool Publishers, 2010. 2, 7, 16, 21

M. Nentwig, M. Hartung, A.-C. N. Ngomo, and E. Rahm. A survey of current link discovery

frameworks. Semantic Web Journal, 2015. 14

T. Neumann and G. Moerkotte. Characteristic sets: Accurate cardinality estimation for rdf

queries with multiple joins. In ICDE, pages 984–994, 2011. 21

A.-C. N. Ngomo and S. Auer. Limes: A time-efficient approach for large-scale link discovery

on the web of data. In IJCAI, pages 2312–2317, 2011. 13

F. Niu, C. Zhang, C. Ré, and J. W. Shavlik. Elementary: Large-scale knowledge-base

construction via machine learning and statistical inference. Int. J. Semantic Web Inf.

Syst., 8(3):42–73, 2012. 6

L. Otero-Cerdeira, F. J. Rodŕıguez-Mart́ınez, and A. Gómez-Rodŕıguez. Ontology match-

ing: A literature review. Expert Syst. Appl., 42(2):949–971, 2015. 16

G. Papadakis, G. Demartini, P. Fankhauser, and P. Kärger. The missing links: discovering

hidden same-as links among a billion of triples. In iiWAS, pages 453–460, 2010. 48, 53

G. Papadakis, E. Ioannou, C. Niederée, and P. Fankhauser. Efficient entity resolution for

large heterogeneous information spaces. In WSDM, pages 535–544, 2011a. 45, 53, 57

G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Eliminating the re-

dundancy in blocking-based entity resolution methods. In JCDL, pages 85–94, 2011b.

53

104 6. CONCLUSIONS

G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Beyond 100 million

entities: large-scale blocking-based resolution for heterogeneous data. In WSDM, pages

53–62, 2012. 48, 57, 80

G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and W. Nejdl. A blocking framework

for entity resolution in highly heterogeneous information spaces. IEEE Trans. Knowl.

Data Eng., 25(12):2665–2682, 2013. 26, 28, 29, 46, 53, 57, 75, 76, 78

G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking: Taking entity

resolutionto the next level. IEEE Trans. Knowl. Data Eng., 26(8):1946–1960, 2014a. 43,

54

G. Papadakis, G. Papastefanatos, and G. Koutrika. Supervised meta-blocking. PVLDB, 7

(14):1929–1940, 2014b. 55

D. Papadias. Nearest neighbor query. In L. LIU and M. ÖZSU, editors, Encyclopedia of

Database Systems, pages 1890–1890. Springer US, 2009. ISBN 978-0-387-35544-3. 7, 20

L. Papaleo, N. Pernelle, F. Säıs, and C. Dumont. Logical detection of invalid sameas

statements in RDF data. In Knowledge Engineering and Knowledge Management - 19th

International Conference, EKAW 2014, Linköping, Sweden, November 24-28, 2014. Pro-

ceedings, pages 373–384, 2014. 13

T. Papenbrock, A. Heise, and F. Naumann. Progressive duplicate detection. IEEE Trans.

Knowl. Data Eng., 27(5):1316–1329, 2015. 70

Y. Raimond, C. Sutton, and M. B. Sandler. Automatic interlinking of music datasets on

the semantic web. In WWW, 2008. 13

A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press,

New York, NY, USA, 2011. ISBN 1107015359, 9781107015357. 36, 39, 51

V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-scale collective entity matching.

PVLDB, 4(4):208–218, 2011. 21, 67

M. Saleem, S. S. Padmanabhuni, A. N. Ngomo, J. S. Almeida, S. Decker, and H. F. Deus.

Linked cancer genome atlas database. In I-SEMANTICS, pages 129–134, 2013. 10

S. Santini and R. Jain. Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell., 21

(9):871–883, 1999. 26

M. Schmachtenberg, C. Bizer, and H. Paulheim. Adoption of the linked data best practices

in different topical domains. In ISWC, pages 245–260, 2014. 10, 76

105

A. Shrivastava, T. Malisiewicz, A. Gupta, and A. A. Efros. Data-driven visual similarity

for cross-domain image matching. ACM Trans. Graph., 30(6):154, 2011. doi: 10.1145/

2070781.2024188. URL http://doi.acm.org/10.1145/2070781.2024188. 40

P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future challenges.

IEEE Trans. Knowl. Data Eng., 25(1):158–176, 2013. 16, 20

E. Silva, T. Teixeira, G. Teodoro, and E. Valle. Large-scale distributed locality-sensitive

hashing for general metric data. In A. Traina, J. Traina, Caetano, and R. Cordeiro,

editors, Similarity Search and Applications, volume 8821 of Lecture Notes in Computer

Science, pages 82–93. Springer International Publishing, 2014. 41

T. Skopal. On fast non-metric similarity search by metric access methods. In EDBT, pages

718–736, 2006. 26

F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: probabilistic alignment of relations,

instances, and schema. PVLDB, 5(3):157–168, 2011. 16

A. Tonon, M. Catasta, G. Demartini, P. Cudré-Mauroux, and K. Aberer. Trank: Ranking

entity types using the web of data. In ISWC, pages 640–656, 2013. 14

A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977. 26

R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce.

In SIGMOD, pages 495–506, 2010. 53, 57

V. S. Verykios, G. V. Moustakides, and M. G. Elfeky. A bayesian decision model for cost

optimal record matching. VLDB J., 12(1):28–40, 2003. 21

N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing algorithms for entity resolution.

PVLDB, 7(12):1071–1082, 2014. 92

J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links on the

web of data. In ISWC, pages 650–665, 2009. 13, 52

J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How similar is similar. PVLDB,

4(10):622–633, 2011. 25

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution.

PVLDB, 5(11):1483–1494, 2012. 92

M. Weis and F. Naumann. Detecting duplicate objects in XML documents. In IQIS, pages

10–19, 2004. 65

M. Weis and F. Naumann. Dogmatix tracks down duplicates in XML. In SIGMOD, pages

431–442, 2005. 32

http://doi.acm.org/10.1145/2070781.2024188

106 6. CONCLUSIONS

M. Weis and F. Naumann. Detecting duplicates in complex XML data. In ICDE, page

109, 2006. 65

M. J. Welch, A. Sane, and C. Drome. Fast and accurate incremental entity resolution

relative to an entity knowledge base. In CIKM, pages 2667–2670, 2012. 71

S. E. Whang and H. Garcia-Molina. Disinformation techniques for entity resolution. In

CIKM, pages 715–720, 2013. 91

S. E. Whang and H. Garcia-Molina. Incremental entity resolution on rules and data. VLDB

J., 23(1):77–102, 2014. 71

S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity

resolution with iterative blocking. In SIGMOD, pages 219–232, 2009. 71

S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd entity reso-

lution. PVLDB, 6(6):349–360, 2013a. 92

S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution. IEEE

Trans. Knowl. Data Eng., 25(5):1111–1124, 2013b. 53, 70

W. E. Winkler. The state of record linkage and current research problems. Technical report,

Statistical Research Division, U.S. Census Bureau, 1999. 28

C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate

detection. In WWW, pages 131–140, 2008. 50, 57

C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang. Efficient similarity joins for near-

duplicate detection. ACM Trans. Database Syst., 36(3):15, 2011. 49, 50

S. Yan, D. Lee, M.-Y. Kan, and C. L. Giles. Adaptive sorted neighborhood methods for

efficient record linkage. In JCDL, pages 185–194, 2007. 44, 57

X. Yu, H. Ma, B. P. Hsu, and J. Han. On building entity recommender systems using user

click log and freebase knowledge. In WSDM, pages 263–272, 2014. 5, 17

A. Zaveri, A. Maurino, and L.-B. Equille. Web data quality: Current state and new chal-

lenges. Int. J. Semant. Web Inf. Syst., 10(2):1–6, 2014. 6, 10

C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for large data in mapreduce. In

EDBT, pages 38–49, 2012a. 52

D. Zhang, T. Song, J. He, X. Shi, and Y. Dong. A similarity-oriented RDF graph matching

algorithm for ranking linked data. In CIT, pages 427–434, 2012b. 26, 27, 34

107

Y. Zhen, P. Rai, H. Zha, and L. Carin. Cross-modal similarity learning via pairs, pref-

erences, and active supervision. In Proceedings of the Twenty-Ninth AAAI Conference

on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 3203–3209,

2015. 40

108

Authors’ Biographies

VASSILIS CHRISTOPHIDES

Vassilis Christophides is Professor of Computer Science at the University of Crete. He

has been recently appointed to an advanced research position at INRIA Paris - Rocquen-

court. Previously, he worked as Distinguished Scientist at Technicolor, R&I Center in Paris.

He studied Electrical Engineering at the National Technical University of Athens (NTUA),

Greece, July 1988, he received his DEA in computer science from the University PARIS VI,

June 1992 and his Ph.D. from the Conservatoire National des Arts et Metiers (CNAM) of

Paris, October 1996. His main research interests include Databases and Web Information

Systems, as well as Big Data Processing and Analysis. He has published over 130 articles

in high-quality international conferences, journals and workshops. He has been scientific

coordinator of a number of research projects funded by the European Union, the Greek

State and private foundations on the Semantic Web and Digital Preservation at the In-

stitute of Computer Science of FORTH. He has received the 2004 SIGMOD Test of Time

Award and the Best Paper Award at the 2nd and 6th International Semantic Web Confer-

ence in 2003 and 2007. He served as General Chair of the joint EDBT/ICDT Conference in

2014 at Athens and as Area Chair for the ICDE “Semi-structured, Web, and Linked Data

Management” track in 2016 at Bali, Indonesia.

VASILIS EFTHYMIOU

Vasilis Efthymiou is a PhD candidate at the University of Crete and a member of the

Information Systems Laboratory of the Institute of Computer Science at FORTH. The topic

of his PhD research is entity resolution in the Web of data. He got his MSc and BSc degrees

from the same university in 2012 and 2010, respectively. He has received undergraduate

and postgraduate scholarships from FORTH, working in the areas of Semantic Web, non-

monotonic reasoning, and Ambient Intelligence.

KOSTAS STEFANIDIS

Kostas Stefanidis is a research scientist at ICS-FORTH, Greece. Previously, he worked as

a post-doctoral researcher at the IDI Dept. of NTNU in Norway, with a scholarship funded

by the ERCIM Marie Curie Network, and the CSE Dept. of CUHK in Hong Kong. He got

his PhD in personalized data management from the University of Ioannina, Greece, in 2009.

AUTHORS’ BIOGRAPHIES 109

His research interests lie in the intersection of databases, Web and information retrieval, and

include personalized and context-aware data management systems, recommender systems,

keyword-based search, and information extraction, resolution and integration. Kostas has

been involved in several international projects and co-authored more than 35 papers in

peer-reviewed conferences and journals, including ACM SIGMOD, IEEE ICDE and ACM

TODS. He is the General co-Chair of the Workshop on Exploratory Search in Databases

and the Web (ExploreDB), and the Web & Information Chair of SIGMOD/PODS 2016,

and the Proceedings Chair of EDBT/ICDT 2016.

	List of Figures
	List of Tables
	Web of Data: Describing and Linking Entities
	Matching and Resolving Entities
	The Problem of Entity Resolution
	Similarity functions
	Content-based similarity functions
	Relational similarity functions
	Approximations of similarity functions

	Discussion

	Blocking
	The Problem of Entity Blocking
	Blocking in Traditional Data Warehouses
	Blocking in the Web of Data
	Block Post-processing Methods
	Discussion

	Iterative Entity Resolution
	The problem of iterative entity resolution
	Merging-based iterative entity resolution
	Relationship-based iterative entity resolution
	Iterative Blocking
	Discussion

	Experimental Evaluation of Blocking Algorithms
	Datasets
	Measures
	Quality Results
	Identified Matches (TPs)
	Missed Matches (FNs)
	Non-matches (FPs and TNs)

	Performance Results
	Different Types of Links
	Lessons Learned

	Conclusions
	Authors' Biographies

